Ground Based Lidar and Microwave Radiometry Synergy for High Vertical Resolution Thermodynamic Profiling

Meteorological Technology World Expo 13th – 15th October 2015

María Barrera Verdejo Universität zu Köln, Cologne, Germany,

Why synergies?

Why synergies?

Each instrument has advantages and drawbacks.

Different instruments present different point of view of our scenario.

Want the most optimal atmospheric estimate.

Why synergies?

Each instrument has advantages and drawbacks.

Different instruments present different point of view of our scenario.

Want the most optimal atmospheric estimate.

Why lidar and microwave (MWR)?

LIDAR	MWR
+ Very high vertical resolution	- Limited vertical resolution
 No observations in and above clouds. Noisy during daylight. No full vertical profile 	+ All weather conditions except for rain
- No automated operation	+ Continuous data acquisition
 Instability of the laser. No internal calibration 	+ Calibration with internal references

LIDAR	MWR
+ Very high vertical resolution	- Limited vertical resolution
 No observations in and above clouds. Noisy during daylight. No full vertical profile 	+ All weather conditions except for rain
- No automated operation	+ Continuous data acquisition
 Instability of the laser. No internal calibration 	+ Calibration with internal references

LIDAR	MWR
+ Very high vertical resolution	- Limited vertical resolution
 No observations in and above clouds. Noisy during daylight. No full vertical profile 	+ All weather conditions except for rain
- No automated operation	+ Continuous data acquisition
 Instability of the laser. No internal calibration 	+ Calibration with internal references

LIDAR	MWR
+ Very high vertical resolution	- Limited vertical resolution
 No observations in and above clouds. Noisy during daylight. No full vertical profile 	+ All weather conditions except for rain
- No automated operation	+ Continuous data acquisition
- Instability of the laser. No internal calibration	+ Calibration with internal references

LIDAR	MWR
+ Very high vertical resolution	- Limited vertical resolution
 No observations in and above clouds. Noisy during daylight. No full vertical profile 	+ All weather conditions except for rain
- No automated operation	+ Continuous data acquisition
 Instability of the laser. No internal calibration 	+ Calibration with internal references

Main idea

RL mixing ratio and temperature profiles

MWR TBs

Brightness Temperature [K]

Measurement: hps, 130417, Elev. = [89.0, 91.0]

RL mixing ratio and temperature profiles

How?

 $X_{i+1} = X_i + \left(K_i^T S_e^{-1} K_i + S_a^{-1}\right)^{-1} \times \left[K_i^T S_e^{-1} \left(y - y_i\right) + S_a^{-1} \left(x_a - x_i\right)\right]$

- A priori information, **x**_a, **S**_a
 - Radiosondes climatology
- Measurements, y, S_e
 - Lidar temp and humidity profiles
 - TB from MWR
- Atmospheric retrieved parameters, x=[T,q]
 - Temperature and humidity profiles

$$\mathbf{X}_{i+1} = \mathbf{X}_{i} + \left(\mathbf{K}_{i}^{T} \mathbf{S}_{e}^{-1} \mathbf{K}_{i} - \mathbf{S}_{a}^{-1}\right)^{-1} \times \left[\mathbf{K}_{i}^{T} \mathbf{S}_{e}^{-1} \left(\mathbf{y} - \mathbf{y}_{i}\right) - \mathbf{S}_{a}^{-1} \left(\mathbf{x}_{a} - \mathbf{x}_{i}\right)\right]^{-1}$$

- A priori information, **x**_a, **S**_a
 - Radiosondes climatology
- Measurements, y, S_e
 - Lidar temp and humidity profiles
 - TB from MWR
- Atmospheric retrieved parameters, x=[T,q]
 - Temperature and humidity profiles

$$\mathbf{X}_{i+1} = \mathbf{X}_{i} + \left(\mathbf{K}_{i}^{\mathsf{T}} \mathbf{S}_{e}^{\mathsf{T}} \mathbf{K}_{i} + \mathbf{S}_{a}^{\mathsf{T}}\right)^{-1} \times \left[\mathbf{K}_{i}^{\mathsf{T}} \mathbf{S}_{e}^{\mathsf{T}} \left[\mathbf{y} - \mathbf{y}_{i}\right] + \mathbf{S}_{a}^{\mathsf{T}} \left[\mathbf{x}_{a} - \mathbf{x}_{i}\right]\right]$$

- A priori information, **x**_a, **S**_a
 - Radiosondes climatology
- Measurements, y, S_e
 - Lidar temp and humidity profiles
 - TB from MWR
- Atmospheric retrieved parameters, x=[T,q]
 - Temperature and humidity profiles

$$\mathbf{X}_{i+1} = \mathbf{X}_i - \left(\mathbf{K}_i^{T} \mathbf{S}_e^{-1} \mathbf{K}_i - \mathbf{S}_a^{-1}\right)^{-1} \times \left[\mathbf{K}_i^{T} \mathbf{S}_e^{-1} \mathbf{y} - \mathbf{y}_i\right] - \mathbf{S}_a^{-1} \left(\mathbf{x}_a - \mathbf{x}_i\right)$$

- A priori information, **x**_a, **S**_a
 - Radiosondes climatology
- Measurements, y, S_e
 - Lidar temp and humidity profiles
 - TB from MWR
- Atmospheric retrieved parameters, x=[T,q]
 - Temperature and humidity profiles

Thanks for your attention