Quantitative evaluation of regional precipitation forecasts using multi-dimensional remote sensing observations

Partnership

- Susanne Crewell, Felix Ament, Meteorological Institute Munich (MIM)
- Jürgen Fischer, Marc Schröder, FU Berlin (FUB)
- George Craig, Martin Hagen, Monika Pfeifer, (DLR)
- Michael Baldauf, Deutscher Wetterdienst (DWD)
- Nicole van Lipzig, Katholieke Universiteit Leuven (KUL), Belgium

Contributes to PQP Goals

- Identification of physical and chemical processes responsible for the deficiencies in quantitative precipitation forecast
- Determination and use of the potentials of existing and new data and process descriptions to improve quantitative precipitation forecast

QUEST: Strategy

Observations

- multi-frequency radiances
- polarimetric radar quantities
- ground based and space borne observations

Retrieval

- water vapour
- cloud properties
- precipitation

Schröder et al. [2006]

Forward Operator

- SynPolRad (polari.radar)
- SynSat (MSG, MODIS)
- SynSatMic (AMSU, SSM/I)

Weather Forecasts

- three-dimensional description of the forecasted atmospheric state
- focus on Lokal-Modell Kürzfrist (LMK)

QUEST: Approach

Case Studies (ongoing)

Tool development

- SynPolRad
- SynSat (-Mic)
- MSG μ-phys. retrievals
- verification measures
- ..

Model Sensitivity Runs

Hypothesis formulation

"What are the crucial variables/processes to observe and to improve?"

comparison tools test of hypotheses

Model Improvement (new)

- cloud microphysics
- land surface
- turbulence

Long Term Evaluation

Lokal-Modell Kürzfrist

- test suites
- GOP duration 2007
- benefits of high resolution modelling

Identification of systematic model deficits

Conditional verification

- regionalization
- diurnal cycle
- weather situation dep.

Cross correlation of different variables

"How important is physical consistency?"

Conditional Verification: LTE

MSG Comparison

Cloud cover (%) LMK00 / LMK12	BIAS (%)	STD (%)	Correlation
LMK total	8/5	9/9	0.80 / 0.80
Sea	9/8	17 / 17	0.72 / 0.70
Alps	6/2	14 / 15	0.78 / 0.81
Flat land	9/7	17 / 17	0.68 / 0.70
Low mountain	7/5	15 / 16	0.68 / 0.67
Poldirad domain	5/2	17 / 17	0.72 / 0.75
COPS domain	4/0	22 / 20	0.49 / 0.61

- complete test suites analysis
- separate weather regimes
- prepare GOP exploitation

Cloud microphysics: Case Study

Polarimetric radar quantities

- Forward operator SynPolRad links LM predictions and observations.
- Polarimetric data provides information about hydrometeor types.
- inclusion of graupel in LMK improves representation of convective cells

Vertical cross section at 12 August 2004, 17 UTC.

- add more observations for better constraints
- test more microphysical schemes

Land Surface: Case Study or LTE

Felix? Your Vorarbeiten!

Turbulence: Case Study

Horizontal structure

- refine cloud pattern decriptors
- cross correlate different variables (precip/cloud/vapor)
- test 3D-turbulence & new shallow convection param.

Vertical structure

van Lipzig et al. [2006]

PQP Collaborations

COPS & GOP Preparation

Improvement of Model Physics

- Beheng and Blahak, Karlsruhe
 Test of the newly developed cloud microphysics parametrization
- Bott and Gassmann, Bonn
 Evaluation of the newly developed convection scheme, case study selection
- Schlünzen, Hamburg
 Support in verification activities, satellite observations, process studies

Data assimilation

Simmer et al., Bonn (DAQUA)
 Identification of test cases, satellite data, verification of assimilation runs

Verification

- Cubasch, Nevir and Reimer, Berlin (STAMPF)
 Verification measures, precipitation analysis, satellite data, connection to clouds and vertical velocity
- Wernli, Hagen and Frei, Mainz (VERIBREG)
 Verification measures, aggregated radar products, cross correlation of variables

