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Abstract
We provide a detailed analysis of convectively generated cold pools (CPs) over
flat midlatitude land, combining ten-year high-frequency time series of mea-
surements at several heights available from the 213-m tower observatory at
Cabauw, the Netherlands, with a collocated 2D radar rainfall dataset. This com-
bination of data allows us to relate observations of the CP’s temporal and vertical
structure to the properties of each CP’s parent rain cell, which we identify
by rain-cell tracking. Using a new detection method, based on the anoma-
lies of both the vertically averaged wind and the temperature, we monitor the
arrival and passing of 189 CPs during ten summers (2010–2019). The time series
show a clear signature of vortex-like motion along the leading CP edge in the
vertical and horizontal wind measurements. The arrival of CP gust fronts is
characterized by a steep decrease in both temperature and moisture, with a
recovery time of approximately two hours. We see no evidence of moisture
rings on the gust front edge, and therefore no indications for thermodynamic
convective triggering. From the tower data, we obtain a median CP tempera-
ture drop of Tdrop ≈ −2.9 K and a height-averaged horizontal wind anomaly of
Δumax ≈ 4.4 m⋅s−1. Relating the individual CP’s horizontal wind anomalies and
temperature drops, we confirm the validity of the theoretical density current
relationship, Δumax ∝ T1∕2

drop. We further propose a simple statistical model to
relate the CP strength defined by Tdrop to the environmental properties influenc-
ing the CP: rain intensity and lower boundary-layer saturation. A multivariate
linear regression suggests a 1 K colder CP for a 4 mm⋅hr−1 more intense rain
cell (instantaneous area-averaged rain intensity) or for a 2.5 K larger pre-CP
dew-point depression.
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Data

213-m tower observatory at Cabauw, Netherlands

→ 1-min averaged T, Tdp, V from 10, 20, 40, 80, 140, 200m (60,
180m in 2019)

collocated 2D radar rainfall dataset

→ 5min and 1 km × 1 km resolution from KNMI radars in
Herwijnen and Helder

10 years data of summers (May-September) 2010-2019

→ 189 Cold pool events to analyze
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CHAPTER 1. INTRODUCTION 4

Figure 1.1: Schematic of convection and cold pool generation. Left: As a cloud grows,
water condenses and is lofted up along with the rising air (red arrows). Right: As the cloud
mature some of the condensed water begins to fall as rain. Some of this rain evaporates on
the way down, creating negatively buoyant air which begins to descend (red arrows). When
this air reaches the ground it slumps down and spreads out, forming a cold pool. Figure
courtesy Wolfgang Langhans.

Schematic of convection and CP generation (Jeevanjee 2016)
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Algorithm for the detection of CP from tower measurements

following Szoeke et al. (2017) for T

0. smooth T (11min moving average)
1. Ti is a Tmin if Ti <Tj for j ∈ −20, . . . , 0
2. CP consist of consecutive Tmin with a Tmin, first and Tmin, last
(+0.5 K fluctuation are allowed)

3. Ti is Tmax if Ti ≥Tj for j ∈ −10, . . . , 0 with T0 = Tmin, first
4. δT=Tmax - Tmin, last
5. ∆t is the time difference between Tmin, first and Tmin, last

→ CP detection if δT > 1.5 K and ∆t≤ 60min
→ Tdrop equates δT for non-smoothed T
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Algorithm for the detection of CP from tower measurements

novel criterion for V

1. smooth V (2 h moving average) and subtract it from V
2. smooth over height by averaging series over 6 heights
→ height-averaged horizontal wind anomalies: ∆u
3. ∆umax is maximum of ∆u of a as CP time series (from T
criterion) between 10min before Tmin, first and Tmin, last

→ confirm CP detection if ∆umax> 4σ, where σ is the standard
deviations of the daily ∆u time series
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4 KRUSE et al.

F I G U R E 1 Exemplifying cold pool detection by two-step criterion. (a) Daily time series of temperature, measured at the 10 m level at
1-min temporal resolution and smoothed with an 11-min centered window. The red symbols and two horizontal lines mark the initial
temperature drop 𝛿t of a detected CP event. (b) Horizontal wind anomaly averaged over all tower heights (Section 2.2) measured at 1-min
temporal resolution. The anomaly is computed with respect to a 2-hr centered running temporal average. The horizontal dashed blue line
indicates four standard deviations from the daily mean horizontal wind anomaly, exceedance of which is used as a criterion for the detection
of strong wind anomalies. (c) Sketch of a cold pool (blue shaded area) crossing the Cabauw tower. The red arrows indicate the propagation
velocity and internal circulation of the cold pool, together composing the measured horizontal wind anomaly. The levels of temperature and
horizontal wind measurements (10, 20, 40, 80, 140, and 200 m) are indicated by solid horizontal black lines [Colour figure can be viewed at
wileyonlinelibrary.com]

1. The temperature at a given time step is defined as a min-
imum temperature if it is lower than any temperature
within the preceding 20-min time window.

2. CP events are defined by combining multiple such tem-
perature minima if they are consecutive (i.e., separated
by 1 min), or if lying within 20 min of each other given
that the temperature during that time window does
not exceed either of them by 0.5 K. This way we allow
for small temperature fluctuations within the CP inte-
rior without detecting it as two separate CP events.
We choose these values following the algorithm pro-
posed in de Szoeke et al. (2017). The temperatures at the
beginning and end of a CP event are denoted as the first
and last Tmin.

3. For each detected CP event, the temperature drop
𝛿T is defined as the absolute difference between the
last Tmin and the maximum smoothed temperature
in the 10-min time window preceding the first Tmin
(Figure 1a). A time interval Δt is defined as the time
elapsed between the first and the last Tmin.

4. A CP event is recorded if 𝛿T exceeds a 1.5-K thresh-
old and the time interval Δt does not exceed 60 min.
The temperature threshold is raised compared with the
one used in de Szoeke et al., 2017 (aimed at detect-
ing CPs over a tropical oceanic surface) to reduce the

signal-to-noise ratio, caused by the higher tempera-
ture fluctuations over land compared with the (tropical)
ocean.

5. A refined temperature drop Tdrop is defined as the dif-
ference between the maximum unfiltered temperature
within 10 min preceding the first Tmin and the min-
imum unfiltered temperature within the temperature
drop. We use this stronger temperature drop to have a
more accurate measure of the effective cooling due to
the CP. We note that, whereas the 𝛿T values are system-
atically too low due to smoothing, they may at times be
very high if they include local fluctuations.

2.2.2 Wind criterion

A further criterion is then added to the detection
algorithm, as a novelty with respect to the algorithm used
by de Szoeke et al. (2017), to ensure that there is a wind
gust associated with each detected temperature decrease.
For this purpose we use the time series of horizontal wind
speed at the six tower levels. For each day we smooth the
1-min time series with a running 2-hr centered window
and subtract the smoothed time series from the original
time series to obtain the “horizontal wind anomaly”. We

Example August 27, 2019

7



Attribution of a rain cell from radar data
KRUSE et al. 5

F I G U R E 2 Schematic of rain cell attribution algorithm. (a) Overview of radar data domain with the location of the Cabauw tower
marked. The black contour line marks the political boundary of the Netherlands. (b) Schematic of geometrical requirements on the rain cell
position during t ∈ [t0 − 𝛿 min(t0, tmin)] based on the wind direction of the detected CP gust front at time t0. Only rain cells within the yellow
half-circle are accepted. (c) Schematic of requirement on temporal overlap of rain cells that exist in the time window t ∈ [tmin, tmax] [Colour
figure can be viewed at wileyonlinelibrary.com]

choose the 2-hr smoothing window to extract short-term
fluctuations from long-term wind variability. To extract the
vertically coherent signals in the data set, we compute the
average wind speed over all six tower heights. This way, we
reduce random (or turbulent) fluctuations, and a wind gust
visible at all six heights will rise above the noise. We call
this variable the “height-averaged horizontal wind anoma-
ly” (Δu). For simplicity, we team the maximum of this
variable in a given time window the “wind peak” Δumax.

The detection algorithm then scans the events recorded
by the temperature criterion, and ultimately saves an event
as a “cold pool” if there is a wind peak within 10 min pre-
ceding the first Tmin and the time of the last Tmin that
exceeds four standard deviations (4𝜎) of the daily 1-min
Δu time series. An example, illustrating the algorithm
(Figure 1), shows the 10-m temperature time series and the
height-averaged horizontal wind anomaly time series of a
specific day where a CP was detected (August 27, 2019).

2.2.3 Parameter sensitivity

The parameters for the algorithm were initially tuned
based on two case studies, where the front of the CPs
was clearly visible in the radar images due to dust and/or
insects drafted up in the convergence zone (Herwijnen
radar images, May 29, 2018, 1430–1530 UTC and August
27, 2019, 1630–1700 UTC (Figure 3), presented in Kruse,
2020). This allowed us to visually determine the time
instance at which the CP front should be detected at
the measurement tower, revealing typical CP signals in
the time series that we should look for and against which
the algorithm was calibrated. The thresholds on temper-
ature and wind peak were chosen to capture these CP
cases from the daily temperature and wind time series,
and were kept as high as possible in order to find similar

cases of strong, clear CP signals throughout the year and
to exclude sea breezes. Reducing the threshold in tempera-
ture anomaly from 1.5 K to 1 K adds only a few extra cases
(an additional 15% for the summer of 2019). By contrast,
reducing the threshold on the wind speed from 4𝜎 to 3𝜎
nearly doubles the number of cases detected. However,
the additional cases are of very similar nature, that is, the
gust fronts are detected shortly prior to the presence of a
rain cell over the tower, with the only difference that the
rain cells are weaker. This means that the additional CPs
detected are generated by rain cells with intensities that
are often lower than the threshold of 1 mm⋅hr−1 set for the
detection of convective rain cells (Section 2.3).

2.3 Attribution of a rain cell from radar
data

2.3.1 Rain cell tracking

We use an Iterative Raincell Tracking (IRT) method (Mose-
ley et al., 2014; 2019) to track rain cells in time and space
from the gridded radar rainfall product. The IRT locates
spatially contiguous areas of rainfall, termed objects, and
tracks them in time if they overlap with objects in sub-
sequent time steps. This allows the definition of rain cell
tracks, extending over a time window t ∈ [tmin, tmax]. For
the object identification, a threshold of 0.08 mm per 5 min,
corresponding to I ≈ 1 mm⋅hr−1, is imposed along with a
requirement of a minimum of four contiguous rainy pixels
(one pixel corresponds to an area of approximately 1 km
× 1 km). To each detected CP a rain cell track is then
attributed based on a multistep algorithm (Figure 2). First,
we select all rain tracks that exist for at least Δ=10 min
during the time interval 𝛿 = 30 min preceding the CP
detection time t0 at any point in the domain. The tracks are

• Iterative Raincell Tracking by Moseley, Berg, and
Jan O Haerter (2013)

• Attribution of the closest rain cell (at least 10min lasting)
from the previous 30min before the CP located in front of
the tower (with respect to the wind direction)

→ 116 of 189 CPs are attributed to unique rain cell 8
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F I G U R E 3 Cold pool
developing around Herwijnen radar
tower. The Herwijnen tower is
marked as an “x” in each figure.
Radar reflectivity (left column) and
Doppler radial velocity (right
column) were recorded on August
27, 2019 in 10-min steps from 16:40
to 17:00 as marked in panels (a)–(c),
respectively. The gust front is clearly
seen as a ring of low reflectivity
values spreading around the largest
rain event. This ring corresponds to
positive radial velocities. We note
that the measurements shown are
taken at an elevation angle of 1.20◦.
In (a), the gust front is observed at
approximately 200 m asl, whereas in
(c) the observed height is
approximately 400 m asl [Colour
figure can be viewed at
wileyonlinelibrary.com]

afternoon, coinciding with the time of day when convec-
tion is most active over land (Figure A3).

We compute the composites by first centering the indi-
vidual CP time series on their respective times of maxi-
mum horizontal wind anomaly (t0), and retain the data
for 60 min before and 120 min after t0, resulting in a set
of time series which each have the same number of time
steps. For each time step, we then average over all time
series, yielding the mean time series. To compute the com-
posites of the anomalies x′(t) of a quantity x(t), such as
horizontal wind, temperature, and water vapor concentra-
tion, we first remove the respective pre-CP temporal mean
from the time series, that is,

x′(t) ≡ x(t) − x , (2)

where x is the time average over the 51 1-min time steps
from t0 − 60 to t0 − 10 min, hence the time window preced-
ing the arrival of the CP. The 10-min margin was chosen
to ensure that the CP signal does not influence the mean.
Furthermore, for the temperature anomaly, we remove the
effects of the diurnal cycle by subtracting the two-hour
running mean. We verified that the one-year composites of
temperature and wind, although they are somewhat more
noisy, are comparable with the ten-year composites of the

same variables. This makes us confident that one year of
data is representative of a larger data set.

The edge of the composite CP is characterized by a
strong positive horizontal wind anomaly (gust front) seen
at all tower heights (Figure 4a). Before and after passage
of the gust front, the wind anomaly increases monoton-
ically with the tower height, as one would expect in the
surface layer (see Figure 4d). By contrast, within a window
of approximately six minutes enclosing t = t0, the largest
value of horizontal wind anomaly is measured at an inter-
mediate tower level, near z = 80 m (Figure 4c). Since the
measured horizontal wind anomaly corresponds to the
superposition of the propagation speed of the CP front and
the internal CP circulation (Rooney, 2018), we interpret
this window as the time interval where the vortical circu-
lation within the CP head affects the measured horizontal
wind speeds. If we assume the average CP gust front to
be propagating at u ≈ 0.67 u′(t0)10m = 2.7 m⋅s−1, following
the relation found in Goff (1976), this would imply that the
width of the CP head is approximately 1 km, considering
the transit time of six minutes.

The horizontal wind anomaly is preceded by a nega-
tive temperature anomaly that occurs simultaneously and
at the same rate at all tower heights. After t0, the lower
heights z show systematically deeper anomalies T′(z). We

Example August 27, 2019
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F I G U R E 4 Composite time series of (a) horizontal wind anomaly u′ and (b) temperature anomaly T′. These composites include 189
CPs detected in the summers 2010–2019. Blue lines show the ensemble mean; blue shaded areas show the standard deviation, computed
from the CP ensemble, indicating the ensemble spread between the different CPs at each given time, and computed at the height of the
strongest signal for each variable (80 m for the horizontal wind, 10 m for the temperature). Vertical lines highlight times Δt = 0 min (red)
and Δt = 10 min (blue). Insets show (c) u′ at the heights measured at the tower at Δt = 0 min; (d) analogous to (c) but at Δt = 10 min; (e)
T′ at the heights measured at the tower at Δt = 10 min, with linear fit used to estimate CP height (intercept: 503.8, slope: −304.7) [Colour
figure can be viewed at wileyonlinelibrary.com]

interpolate T′(z) linearly at 10 min towards T′(z) = 0, to
obtain a rough estimate of the height z0 where the tem-
perature anomaly disappears (Figure 4b, inset). We esti-
mate z0 ≈ 500 m as an indication for a height scale for
the body of the composite CP. We note that the tempera-
ture anomaly is fully recovered at all measurement heights
after approximately two hours from the beginning of the
temperature drop.

The circulation within the CP head is further charac-
terized by the vertical wind peak (updraft) that precedes
the horizontal wind anomaly, as reflected in a positive ver-
tical wind anomaly 1–2 min before t0, which exceeds four
standard deviations of the fluctuations in the time series
(Figure 5a). Here, the standard deviation represents the
fluctuation of the composite vertical velocity time series
in the time window [t0 − 60, t0 + 120 min], so, although
the vertical wind is noisy, the exceedance of this line indi-
cates a clear signal of a strong updraft. The updraft signal
is strongest at the highest measurement level (180 m).

The water vapor concentration starts decreasing at
the same time as the vertical wind peak occurs at both
measurement heights, confirming that the CP interior is
dry. There is not a clear signal of enhanced moisture before
t0, indicating that moisture rings may not be an evident

characteristic of the CPs in this study. We note, however,
that the water-vapor concentration starts decreasing four
to five minutes after the temperature has started decreas-
ing, meaning that the CP head is more moist than the
body. The moisture anomaly is recovered within one to two
hours. Whereas all previously discussed composite char-
acteristics are mostly in line with the findings from Kirsch
et al. (2021) for CPs over Hamburg, Germany, the mois-
ture signal differs significantly, showing moistening rather
than drying in the interior of the CPs. The absence of a
wind criterion with a high threshold may lead to the inclu-
sion of CPs measured at different points of their lifetime, or
from different types of rain events, which would affect the
moisture signal. Furthermore, Drager et al. (2020) show in
their simulations that the moisture content in the interior
and ahead of CP fronts depends crucially on the soil mois-
ture: over dry soils, their CPs show an increase in moisture,
similar to the observations in Kirsch et al. (2021), whereas
for wet soils the moisture signal shows the same char-
acteristics as our measurements with dry air in the inte-
rior, but with the addition of moisture rings ahead of the
CP front.

In Figure 6 we provide a sketched summary of the
observed CP characteristics. The circulation, temperature,

CP composite time series for Vh and T
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F I G U R E 5 Composite time series of (a) vertical velocity and (b) water-vapor concentration (WVC) anomaly. These composites include
18 CPs detected in the summer of 2019. Blue shaded areas in each panel show the standard deviation, computed from the CP ensembles,
indicating the ensemble spread between the different CPs at a given time, and computed at the height of the strongest signal for each variable
(180 m for the vertical velocity, 180 m for the WVC). The vertical red line highlights time Δt = 0 min [Colour figure can be viewed at
wileyonlinelibrary.com]

and moisture signal indicate that the CP edge (measured
at t0 − 5 min) is characterized by a moist, cold, updraft;
the CP head (measured at t0) is characterized by cold,
dry air and increased vorticity; and the body of the CP
(measured at t0 + 10 min) is characterized by dry air, with
the largest temperature anomalies at the surface. The
thermodynamic structure of the CP interior is character-
ized by increased atmospheric stability of approximately
5 K⋅km−1, as can be seen in the stratification of the temper-
ature anomaly (Figure 4b), where the lowest level shows
the largest cooling. This stratification does not exist in the
moisture signal, which appears to be homogeneous dry-
ing through the CP’s height, since the anomalies at 60 and
180 m are similar in value (Figure 5b). The recovery time
for temperature and moisture after the passage of the CPs
seems to vary strongly among CPs, as indicated by the
ensemble variance in temperature and moisture anomaly
(blue shading in Figures 4 and 5).

3.2 CP strength

The “strength” of a CP can be characterizied dynami-
cally, by its propagation speed, and thermodynamically,
by its temperature anomaly. Here we wish to quantify the
strength of an ensemble of CPs. Early studies show that, for

incompressible, inviscid, and irrotational (i.e., no internal
motion) density currents in unstratified flows, the propa-
gation speed u can be related to the relative density dif-
ference between the interior of the density current and its
surrounding environment (von Karman, 1940; Benjamin,
1968). Considering that the relative density difference can
be approximated with the relative temperature difference,
a general equation describing the relationship between the
propagation speed u and the temperature anomaly ΔT is

u = k
√

gH ΔT
T0

, (3)

where k is the “internal Froude number” k (Benjamin,
1968; Wakimoto, 2001), g is the gravitational acceleration,
H the CP height, ΔT the temperature difference between
the CP and its environment, and T0 the air temperature
of the environment. Since CPs are density currents in a
nonidealized environment, they are exposed to dissipa-
tion effects, such as surface friction and turbulent mixing,
which are usually included within k. The inviscid case
hereby represents a special case with k =

√
2, while meteo-

rological studies have found values k ≈ 0.7 to be more real-
istic (Wakimoto, 1982; 2001; Markowski and Richardson,
2010). We test the above relation here, assuming a Froude
number of k = 0.7.

CP composite time series for w and WVC (only 2019)
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F I G U R E 6 Summarizing sketch of measured CP properties. On the left is an approximate sketch of which part of the CP is being
measured at the tower at a given point in time: (a) at t = t0 − 5 min, the edge of the CP is being measured at the tower; (b) at t = t0, the head
of the CP; (c) at t = t0 + 10 min, the body of the CP. On the right, a depiction of the measured CP properties corresponding to each part of the
CP measured at its lowest 200 m is given: the edge of the CP shows moist, well-mixed air, along with an updraft; the head of the CP shows dry,
colder, well-mixed air, and the signature of a vortex ring is reflected in the horizontal wind anomaly; the body of the CP shows dry air and a
layered temperature anomaly, with the largest cold anomaly within the bottom layers [Colour figure can be viewed at wileyonlinelibrary.com]

For each CP, we estimate the environmental tempera-
ture T0 from the temperature at 10 m, averaged over the
time window [t0 − 60, t0 − 10 min], as done previously. A
scatter plot of the wind peak Δumax against the relative
temperature drop Tdrop∕T0 for the 189 CPs detected in
the ten summers 2010–2019 (Figure 7) indeed suggests
increasing gust front speed for larger temperature drops.
Viewing Δumax as a proxy for the CP’s total kinetic energy
density and Tdrop as a representation of the CP’s poten-
tial energy density, this indicates a monotonic relation
between the kinetic and potential energy of the CP (Meyer
and Haerter, 2020). We note that the median value of Tdrop
is −2.9 K and that of Δumax is +4.4 m⋅s−1. Comparing a
linear least-squares fit (green line), constrained to passing
through zero (Δumax = 0 should correspond to Tdrop = 0),
with a square-root least-squares fit (red curve, Equation 3)
by inspecting the residuals (Figure 7b,c) indicates that the
latter is a more appropriate fit, given that there is no trend
in the residuals of the square-root fit.

By assuming a fixed internal Froude number k = 0.7,
the fitting constant a = 478 m can be understood as an
estimate of the CP height H (Equation 3). This estimate
is highly sensitive to the chosen value for the Froude

number k. Underestimating k will lead to an overestima-
tion of H (and vice versa). Nevertheless, the estimated
value is comparable to the CP height estimate based on
the temperature anomaly extrapolation z0 ∼ 500 m dis-
cussed earlier. Our value is larger than the average 300-m
CP heights over tropical oceans inferred from aircraft
pressure measurements (Terai and Wood, 2013) and lower
than the height of 746 m found for CPs over Hamburg,
Germany, with a pressure-anomaly based extrapolation
from tower measurements (Kirsch et al., 2021). We point
out that our CP height value is much lower than the
1.5–2 km heights found for early simulated thunderstorm
outflows (e.g., Droegemeier and Wilhelmson, 1987; Liu
and Moncrieff, 1996).

3.3 How does rain intensity influence
CP strength?

CPs develop primarily through the evaporation of rain in
the subcloud layer (Kurowski et al., 2018). The evaporation
is enhanced in rain showers with high drop number
density, though it decreases with high ambient relative

Summary sketch of CP characteristics
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CP strength

Consider CP propagation u (≈ ∆umax) similar to density current

u = k

√
gH∆TT0

,with (1)

k ≈ 0.7 internal Froude number,
g Gravity acceleration,
H CP height (estimated to H ≈ a = 478m, sensitive to k),
∆T temperature difference CP to environment (≈Tdrop),
T0 environment temperature (10m tower mean)

13
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F I G U R E 7 Cold pool property relationship compared with the theoretical model. (a) Gust front strength Δumax versus relative
temperature drop Tdrop∕T0 for all CPs detected during 2010–2019. Considering Equation 3, the fitting constant a in the square-root fit can be
understood as an estimate of the CP height. In the fitting functions, x corresponds to the values on the x-axis. (b) Residuals from square-root
fit (Equation 3), trend shown as a thin dotted black line. Approximately symmetric spread around zero (red line). (c) Same as (b), but for
linear fit. Systematic tendency with an underestimation (overestimation) of Δumax for low (high) Tdrop∕T0 [Colour figure can be viewed at
wileyonlinelibrary.com]

humidity (Seifert, 2008). We here test this bivariate rela-
tionship between the CP, the parent rain cell, and their
mutual environment.

Relative humidity can be estimated directly from the
measured dew-point depression T̃ ≡ T − Td, where T and
Td are averages of temperature and dew-point tempera-
ture over the 50-min time interval preceeding CP detection
([t0 − 60, t0 − 10 min]) at the 140-m level of Cabauw tower.
Whereas the data used in this study do not contain explicit
microphysical information, rain intensity, I, is a rough
proxy for rain drop number density. Its spatial average over
the entire rain cell area, denoted ⟨I⟩, is computed at a
single time step tRC (Section 2.3).

While crude, this spatial average lowers the sensitivity
to biases of the radar measurement, such as that due to
the presence of ice, artificially increasing the reflectivity
locally.

Using linear regression on the data from the ten sum-
mers of CP data (2010–2019), we expand the temperature
drop Tdrop in terms of the low-order terms:

Tdrop ∼ 𝛼0 + 𝛼1 ⟨I⟩ + 𝛼2T̃ + 𝛼3⟨I⟩2

+ 𝛼4T̃2 + 𝛼5⟨I⟩T̃ + (3). (4)

The regression analysis indicates that significant non-
linearity enters through the quadratic terms of rain inten-
sity ⟨I⟩2 and T̃2, whereas the mixed term ImeanT̃ shows
nonsignificant correlation, that is, 𝛼5 shows very high stan-
dard error, and is thus neglected. To avoid the simple
model predicting CPs at vanishing rain intensities or in

a totally saturated atmosphere, we impose the physically
meaningful restriction of zero intercept, that is, 𝛼0 = 0.
Together, we retain the fit function:

Tdrop ∼ 𝛼1⟨I⟩ + 𝛼2T̃ + 𝛼3⟨I⟩2 + 𝛼4T̃2 + (3). (5)

We here compare a linear regression, where 𝛼3 = 𝛼4 =
0, and a nonlinear regression, where 𝛼3 and 𝛼4 may vary
(Table 1). In both models, the CP strength is positively cor-
related with the dew-point depression T̃ and mean rain
intensity ⟨I⟩, confirming that CPs are measurably strength-
ened by drier environmental conditions and larger rain
intensities. In the nonlinear regression, all four remaining
regression coefficients are found to be statistically signif-
icant. We speculate that the negative dependence on ⟨I⟩2

(𝛼3 < 0) stems from very strong rain quickly saturating
the subcloud atmosphere, thus diminishing further rain
evaporation.

To give a more tangible interpretation of the linear
multivariate regression, we note that, with the coefficients
in Table 1, a CP becomes 1 K colder if the rain intensity
of its parent cell is incremented by 4 mm⋅hr−1 (instan-
taneous area-averaged rain intensity) or if the ambient
relative humidity is increased according to a 2.5-K larger
dew-point depression. We compare our results with a
recent study by Kirsch et al. (2021) for CPs over Ham-
burg, Germany, hence a similar geographic region. The
study shows two separate regressions, to determine the
relationship between CP temperature perturbation and
point-measured accumulated rainfall and CP temperature

CP strength

theoretical fit (red), linear fit (green)
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T A B L E 1 Fitted coefficients for the linear and nonlinear
regression models (Equation 5)

Linear
regression

Nonlinear
regression

Coeff.
Std.
error Coeff.

Std.
error

𝛼1 [K⋅hr mm−1] 0.25 0.03 0.44 0.09

𝛼2 [–] 0.40 0.03 0.51 0.08

𝛼3 [K⋅hr2⋅mm−2] −0.020 0.007

𝛼4 [K−1] −0.021 0.007

R-squared (uncentered) 0.89 0.92

Note: 𝛼1 and 𝛼2 represent the coefficients of the terms linear in rain
intensity and temperature, respectively, whereas 𝛼3 and 𝛼4 represent the
coefficients of the terms quadratic in rain intensity and temperature,
respectively.

perturbation and pre-event saturation deficit. CP strength
is found to increase with increasing point-measured
rainfall and with increasing pre-event saturation deficit, in
line with our model.

4 CONCLUSION

In this study, we design and validate a methodology to
detect convectively generated cold pools (CPs) and their
gust fronts over the Netherlands and relate them to their
parent rain cell and environment. CP characteristics have
been studied over many years from an observational point
of view; however, there are very few statistical studies of
CPs over midlatitude coastal land. Our study stands out
by combining tower and radar measurements to analyze
more than 100 CPs in relation to their generating rain cells.
We wish to highlight the following findings:

• The patterns in the horizontal and vertical wind mea-
surements confirm the existence of a vortex ring in the
CP head.

• The detected CPs show weak or absent moisture
rings, while the CP interior shows a negative moisture
anomaly.

• A simple model consisting of a multivariate linear
combination of pre-event dew-point depression and
area-averaged rainfall intensity allows a prediction of
the generated CP’s strength.

To study the evolution of CPs in time and their prop-
erties in relation to their parent rain cell and environ-
ment, we use the combination of local measurements
from a 213-m meteorological tower located in Cabauw, the
Netherlands, and precipitation radar output. To identify

CPs from time series of point measurements, an existing
algorithm for detecting CPs over the ocean (de Szoeke
et al., 2017) is extended to capture CPs over land by
(a) an increased threshold on the temperature anomaly
(1.5 K), and (b) an additional criterion on the horizon-
tal wind-speed anomaly. Studying a few exemplary CPs
revealed a vertically coherent signal in horizontal wind
velocity (“wind peak”) at the tower during the passage
of a CP gust front. Therefore, in our algorithm we record
events as CPs if they are characterized by both a tem-
perature drop and a coherent wind peak. This allows us
to isolate the CPs from the temperature fluctuations over
land, which come without, or with a very weak, wind
signal. The algorithm shows low sensitivity to the thresh-
old on temperature anomaly but high sensitivity to the
wind-peak threshold. We thus recommend keeping the
threshold on temperature at 1.5 K, whereas the threshold
on the wind peak should be varied in accordance with
the threshold on precipitation intensity of the parent rain
cells under consideration. Our choice of parameters may
bias the algorithm to detecting only strong CPs, the fronts
of which are often found to be very close to the parent
rain cell at the time of detection, indicating a low age
of the CPs at the time of detection or a squall-line-like
system, where the CP is advected along with the cloud.
However, we find that, by this constraint, it is ensured
that all identified cases can be attributed to the passage
of a CP rather than other forms of fluctuations. Our
method’s reliability is confirmed by the associated updrafts
and succeeding dry moisture anomalies measured for all
detected CPs.

The composites of 189 CPs from measurements taken
during ten summers (May–September 2010–2019) allow
us to study statistical CP properties and their radial struc-
ture. The CP gust front is characterized by a strong updraft,
which coincides temporally with the beginning of the
negative temperature anomaly and precedes the positive
horizontal wind anomaly and negative moisture anomaly.
The presence of a vortex ring on the edge of the CPs
is confirmed by the changing signal in horizontal wind
measurements at different heights, in the window of time
around the CP passage. In contrast to studies of oceanic
CPs (de Szoeke et al., 2017; Zuidema et al., 2017), we do
not detect a clear signature of moisture rings, that is, areas
of elevated moisture, on the edges of the CPs. This might
be due to the smaller magnitude of latent heat fluxes over
land with respect to the tropical ocean (Drager et al., 2020).
The absence of CP moisture rings in our observations
suggests that, for our ensemble of CPs, the thermody-
namic triggering of new rain events is less important than
the mechanical triggering of new rain events, particularly
driven by the collision of strong gust fronts (Tompkins,
2001a; Torri et al., 2015; Drager et al., 2020). The interior

CP strength: relate Tdrop with rain cell

dew-point depression:
∼
T =

−
T −

−
Tdp

spatial averaged rain intensity from radar: < I >

Tdrop = α1 < I > +α2
∼
T + α3 < I >2 +α4

∼
T 2 + O(3) (2)

CP is 1 K colder (due to lin fit)

→ from 4mm/h more rain
→ from 2.5 K larger dew point

depression
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Conclusion

→ The patterns in the horizontal and vertical wind
measurements confirm the existence of a vortex ring in
the CP head.

→ The detected CPs show weak or absent moisture rings,
while the CP interior shows a negative moisture anomaly.

→ A simple model consisting of a multivariate linear
combination of pre-event dew-point depression and
area-averaged rainfall intensity allows a prediction of the
generated CP’s strength
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Review

+ nice CP statistics
+ comprehensible approach for CP detection

- missing evaluation of ∆umax ∼ ∆T
T0 relation

- why should a (= H) be always equal?
- < I > is taken at what time?
- working ’prediction’ for given CP events but what is about
dew-point depressions without CP?

———————————————————————————————————
+ well applicable and novel recipe for CP detection
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