

Sub-mesoscale evolution of gust patterns measured with three lidars

Julian Steinheuer^{1,2,3}, Ulrich Löhnert^{1,2}, and the FESSTVaL Team

- ¹ Institute of Geophysics and Meteorology, Universität zu Köln, Cologne;
- ² Hans-Ertel Centre for Weather Research, Climate Monitoring and Diagnostics, Cologne/Bonn;
- ³ Julian.Steinheuer@uni-koeln.de

EMS annual Meeting, Bonn | September 7, 2022

collaborative data here: cen.uni-hamburg.de/icdc/

1. Overview

2. Cold front passage on June 12, 2021

1

3. Cold pool on June 29, 2021

4. Conclusion

Objectives

Figure 1: FESSTVaL area with 3 super-sites in 6 km distance from each other (red): Lindenberg (L ,North), Birkholz (B, Northeast), Falkenberg (F, center).

Within the FESSTVaL campaign we use Doppler wind lidar (DWL)

- to generate high-resolution wind profiles in the atmospheric boundary layer (ABL)
- to detect sub-mesoscale variability in wind field by using multiple DWLs
- to investigate storms with different remote sensing devices

Quick continuous scanning mode (CSM)

CSM with 11 measurements in 3.4 s and 3000 pulses/beam.

Figure 2: Observation principle of Figure 3: Sonic anemometer (SAN) gust (3 s in 10 min) vs. DWL gust (3.4 s in 10 min) at 90.3 m in Falkenberg (18.5.21 - 31.8.21).

Figure 4: Meteorological tower in Falkenberg

 \rightarrow see Steinheuer et al. 2022 for the gust retrieval

Cold front passage on June 12, 2021

Triangle measuring of cold front passage on June 12, 2021 (day)

Figure 5: Wind barbs for 10 min gust peaks on June 12, 2021 for the three different FESSTVaL super-sites

- ightarrow DWL retrieves similar winds
- ightarrow 10 min resolution too coarse to distinguish features of front at 13-14 UTC

Cold front passage on June 12, 2021 ($13^{00} - 14^{40}$ UTC)

5

Cold front passage on June 12, 2021 ($13^{00} - 14^{40}$ UTC)

Figure 8: Rain rate from micro rain radar in L.

Figure 7: High-resolution vertical motion (top L, middle B, bottom F) with lowest cloud base height.

6

14:20

14:40

В

Cold front passage on June 12, 2021 (13⁰⁰ – 14⁴⁰ UTC)

Figure 8: Rain rate from micro rain radar in L and HH mobile X-Band radar in F (5 min accumulated).

Figure 7: High-resolution vertical motion (top L, middle B, bottom F) with lowest cloud base height.

В

ightarrow increased wind speeds and wind direction jumps visible in the ABL

 $\rightarrow\,$ negative vertical velocities are an indicator for rain

Cold pool on June 29, 2021

Cold pool on June 29, 2021

2021-06-29 14:00:00 UTC - 14:04:59 UTC

10⁻¹ 10⁰ 10¹ rain rate [mm/h]

102

286 288 290 292 294 296 298 300 302 304 306 air temperature 2m [K]

- \cdot forms in the southeast
- intensifies as it moves north
- reaches Birkholz and marginally Lindenberg
- does not cause rain in Falkenberg, but its temperature and wind influences are recognizable

Figure 10: Rain rate from HH mobile X-Band radar in F (5 min accumulated) with temperature field from interpolated WXTs/APOLLOS (HH network).

Cold pool on June 29, 2021 (13²⁰ – 15⁰⁰ UTC)

. .

10

Cold pool on June 29, 2021 (13²⁰ – 15⁰⁰ UTC)

11

R

Conclusion

- ightarrow DWLs are capable of accurately measuring high-resolution winds
- \rightarrow small-scale variability is resolvable (updrafts, downbursts, rain)
- ightarrow new option to study weather phenomena
- ... further case studies possible, including statistical analysis of cold pools

References

Steinheuer, J. et al. (2022). "A new scanning scheme and flexible retrieval for mean winds and gusts from Doppler lidar measurements". In: Atmospheric Measurement Techniques 15.10, pp. 3243–3260. DOI: 10.5194/amt-15-3243-2022. URL: https://amt.copernicus.org/articles/15/3243/2022/.

FESSTVaL data at cen.uni-hamburg.de/icdc/

Sub-mesoscale evolution of gust patterns measured with three lidars

Julian Steinheuer^{1,2,3}, Ulrich Löhnert^{1,2}, and the FESSTVaL Team

- ¹ Institute of Geophysics and Meteorology, Universität zu Köln, Cologne;
- ² Hans-Ertel Centre for Weather Research, Climate Monitoring and Diagnostics, Cologne/Bonn;
- ³ Julian.Steinheuer@uni-koeln.de

EMS annual Meeting, Bonn | September 7, 2022

collaborative data here: cen.uni-hamburg.de/icdc/