

High-resolution vertical profiling from the three supersites

J. Steinheuer^{1,2,3}, U. Löhnert^{1,2}, L. van Gelder¹

¹ Institute of Geophysics and Meteorology, Universität zu Köln, Cologne;

- ² Hans-Ertel Centre for Weather Research, Climate Monitoring and Diagnostics, Cologne/Bonn;
- ³ Julian.Steinheuer@uni-koeln.de

FESSTVaL Data Workshop Offenbach, May 18 - May 20, 2022

Objective

©OpenTopoMap

Figure 1: Locations of the three supersites 6 km apart from each other: Lindenberg (L), Birkholz (B), and Falkenberg (F).

- generate high-resolution wind profiles in the ABL
- use multiple lidars to detect sub-mesoscale variability in wind field
- investigate storms with multiple remote sensing devices

TOC: High-resolution vertical profiling

- 1. How meaningful is a wind observation for surrounding area?
- 2. Is the DWL w-component useful?
- 3. MWR measurements
- 4. Cold front passage (June 12, 2021)
- 5. Cold pool Jogi (June 29, 2021)
- 6. Conclusion

Figure 2: Observation principle of CSM with 11 measurements in 3.4 s and 3000 pulses/beam. See Steinheuer et al. 2022 for the gust retrieval.

 $\Delta\theta \approx 33^{\circ}$

Z

 $n \approx 11$

 $\alpha = 62^{\circ}$

How meaningful is a wind observation for surrounding area?

How representative is a mean wind measurement from 90.3 m in Falkenberg for the domain (i.e. for Birkholz and Lindenberg)?

all vs. Falkenberg sonic anemometer at 90.3 m

 \rightarrow scatterplots for sonic vs. 6 km apart locations shows significant increase in variability

How representative is a wind gust measurement from 90.3 m in Falkenberg for the domain (i.e. for Birkholz and Lindenberg)?

all vs. Falkenberg sonic anemometer at 90.3 m

- \rightarrow increase in variability in the order of mean wind
- \rightarrow some higher gusts were observed in B and L

Is the DWL w-component useful?

DWL w-component for example day (June 29, Falkenberg)

\downarrow DWL in gust mode

\downarrow DWL vertical staring

both in 1 minute resolution

 \rightarrow similar structures

w-statistics over 2 months summer 2021 (minute resolution)

ightarrow has potential, but needs more investigation

MWR measurements

MWR instrument setup

- Best continous (~ min) estimate of cloudy vertical ABL thermodynamic structure during FESSTVaL → complement to radiosondes
- **Sub-meso-scale variability** of vertical temperature and humidity structure
- How are the horizontal humidity and temperature inhomogeneities during:
 ABL build-up?
 Frontal passage?
 Cold-pools?

Data uploaded to ICDC

May 12, 2022

Dataset Open Access

Microwave Radiometer Observations during FESSTVaL 2022

💿 Löhnert, Ulrich; Knist, Christine; Böck, Tobias; 💿 Pospichal, Bernhard

This data set contains level [drightness temperatures] and level2 (retrieved meteorological variables) of the four ground-based microwave radiometers (MWR) measuring during FESSTVaL 2022 (May-August) at Lindenberg (2 MWR, dwd and uzk), Falkenberg (1 MWR, uzk) and Birkholz (1 MWR, uhh).

For each MWR you find up to seven data file types.

- 1. Up to two level1 data file types: arbritrary viewing direction (e.g. *mwr00_l1_tb_*) and boundary layer scans (e.g. *mwrBL00_l1_tb_*)
- Up to five level2 data file types: path integrated liquid water path (e.g. *_mwr00_l2_clwvi_*), path integrated water vapor (e.g.*_mwr00_l2_pnw_*), coarse vertical resolution water vapor profiles (e.g.*_mwr00_l2_hua_*), coarse vertical resolution temperature profiles (*_mwr00_l2_ta_*), ABL temperature profiles (e.g. *_mwrBL00_l2_ta_*)

see Löhnert et al. 2022

Thanks to Annika Jahnke-Bornemann and ICDC!

Publication date: May 12, 2022	
DOI:	
DOI 10.25592/uhhfdm.10198	
Keyword(s):	
FESSTVaL microwave ra	adiometers
Alexandra di manufa manGlas	
thermodynamic profiles	liquid water path
integrated water vapor	liquid water path mwr_pro
integrated water vapor Communities:	liquid water path mwr_pro
integrated water vapor Communities: Integrated Climate Data Ce	mwr_pro
integrated water vapor Communities: Integrated Climate Data Ce License (for files):	IIquid water path mwr_pro enter - ICDC
Communities: Integrated Water vapor Communities: Integrated Climate Data Ce License (for files):	Inquid water path mwr_pro enter - ICDC bution 4.0
integrated water vapor Communities: Integrated Climate Data Ce License (for files): Creative Commons Attri International	mwr_pro

Measurement modes & products

Vertical stare: Time series of LWP/IWV at Lindenberg & Birkholz every ~2 s **Elevation scanning:** Accurate temperature profile up to 2 km at Falkenberg continuous, at Lindenberg & Birkholz every 15 min

Measurement modes & products

Azimuth scanning: Horizontal humidity gradient

- Continuous azimuth scans provide gradients every ~3 min
- $\cdot\,$ Representative of ${\sim}10\,km$ radius
- Need: path integrated WV and assumption on vertical humidity structure (Schween, Crewell, and Lohnert 2011)

 \Rightarrow Area averaged humidity gradient

Cold front passage (June 12, 2021)

Triangle measuring cold front passage on 12.6.21 (day)

Triangle measuring cold front passage on 12.6.21 (13³⁰)

kachelmannwetter.com/de/regenradar/oder-spree/20210612-1330z.html

Triangle measuring cold front passage on 12.6.21 ($12^{40} - 14^{20}$)

Triangle measuring cold front passage on 12.6.21 ($12^{40} - 14^{20}$)

Cold pool Jogi (June 29, 2021)

Cold pool blue shaded

Red arrows indicate the propagation velocity and internal circulation

Triangle measuring of cold pool Jogi on 29.6.21 (day)

Triangle measuring of cold pool Jogi on 29.6.21 (14⁰⁰)

©OpenTopoMap

Figure 3: Locations of the three supersites 6 km apart from each other: Lindenberg (L), Birkholz (B), and Falkenberg (F).

Finn Burgemeister (Uni Hamburg)

Figure 4: Rain rate from the mobile X-band radar on June 29, 2021, 14 UTC (cold pool Jogi).

Triangle measuring of cold pool Jogi on 29.6.21 ($13^{40} - 15^{20}$)

Triangle measuring of cold pool Jogi on 29.6.21 ($13^{40} - 15^{20}$)

Triangle measuring of cold pool Jogi on 29.6.21 ($13^{20} - 14^{15}$)

kachelmannwetter.com/de/regenradar/oder-spree/20210629.html

Water vapor cold pool Jogi on 29.6.21 (Lindenberg, day)

Water vapor gradients cold pool Jogi 29.6.21 (Lindenberg, 12-15)

Conclusion

- → triangle configuration has potential to see evolution of gust, temperature, and humidity patterns in stormy summer days
- → investigate further cases in synergy with other observations (Apollo & WXT network HH, UAVs)
- \rightarrow maybe further case studies (suggestions?)
- ightarrow present at EGU next week, EMS in autumn
 - ! finnish PhD this year with 3rd paper !

References

Kruse, Irene L., Jan O. Haerter, and Bettina Meyer (Dec. 2021). "Cold pools over the Netherlands: A statistical study from tower and radar observations". In: Quarterly Journal of the Royal Meteorological Society. DOI: 10.1002/qj.4223. URL: https://doi.org/10.1002/qj.4223.

Löhnert, Ulrich et al. (2022). Microwave Radiometer Observations during FESSTVaL 2022. en. DOI: 10.25592/UHHFDM.10198. URL:

https://www.fdr.uni-hamburg.de/record/10198.

- Schween, Jan H., S. Crewell, and U. Lohnert (Mar. 2011). "Horizontal-Humidity Gradient From One Single-Scanning Microwave Radiometer". In: IEEE Geoscience and Remote Sensing Letters 8.2, pp. 336–340. DOI: 10.1109/lgrs.2010.2072981. URL: https://doi.org/10.1109/lgrs.2010.2072981.
- Steinheuer, Julian et al. (Jan. 2022). "A new scanning scheme and flexible retrieval for mean winds and gusts from Doppler lidar measurements". In: DOI: 10.5194/amt-2021-426. URL:

https://doi.org/10.5194/amt-2021-426.

High-resolution vertical profiling from the three supersites

J. Steinheuer^{1,2,3}, U. Löhnert^{1,2}, L. van Gelder¹

¹ Institute of Geophysics and Meteorology, Universität zu Köln, Cologne;

- ² Hans-Ertel Centre for Weather Research, Climate Monitoring and Diagnostics, Cologne/Bonn;
- ³ Julian.Steinheuer@uni-koeln.de

FESSTVaL Data Workshop Offenbach, May 18 - May 20, 2022