

Two different approaches to derive wind gusts from Doppler wind lidar

J. Steinheuer^{1,2,4}, C. Detring³, E. Päschke³, F. Beyrich³, U. Löhnert^{1,2}

¹ Institute of Geophysics and Meteorology, Universität zu Köln, Cologne;

- ² Hans-Ertel Centre for Weather Research, Climate Monitoring and Diagnostics, Cologne/Bonn;
- ³ Deutscher Wetterdienst, Meteorologisches Observatorium Lindenberg Richard-Aßmann-Observatorium;
- ⁴ Julian.Steinheuer@uni-koeln.de

FESSTVaL Data Workshop Offenbach, May 18 - May 20, 2022

TOC: Wind gust from Doppler wind lidars (DWLs)

- 1. Continuous scanning mode
- 2. Julians retrieval
- 3. Carolas retrieval
- 4. First comparison
- 5. Conclusion and prospect

Continuous scanning mode

The 'gust mode'

quick continuous conical scanning mode (CSM) with 3000 pulses/beam

<u>CSM in 3.4 s</u>

- center of range gates (allocation of the) measurements)
- linear interpolation (e.g. for reference height at 90.3 m)

 $\begin{aligned} & \alpha \text{ elevation angle} \\ & \phi \text{ zenith angle} \\ & \theta \text{ azimuth angle} \end{aligned}$

Noise filtering by threshold inappropriate

Left vertical line corresponds to an SNR value of -23 dB, right to -18.2 dB. Doppler velocities from 02/09/19 (25 mil. points).

ightarrow a threshold would filter out too many Doppler velocities

Julians retrieval

Iterative maximum likelihood estimation (MLE)

ightarrow iteratively improve estimation by neglecting bad-fitting data

4

Iterative retrieval for requested time interval

Carolas retrieval

Noise filtering with focus on removing zero noise

→ project the radial velocities(azimuth)= y against radial velocities(azimuth-90°)= x

ightarrow a sine curve becomes a cycle

→ Use the auto correlation function (ACF) to identify radii bands around (0,0) without noise and discards the rest of the data.

Detect and filter outliers that deviate too much from mean

- \rightarrow any point that is *n*×*standard deviation* away from mean is filtered out
- \rightarrow orange observations are the basis for the calculation of both the mean wind and gusts

First comparison

18.5-15.7: Mean wind: sonic anemometer (90.3 m) vs. DWL 177

↓ Carolas retrieval (DWL at 92.7 m)

18.5-15.7: Wind gusts: sonic anemometer (90.3 m) vs. DWL 177

↓ Julians retrieval (DWL at 90.3 m)

↓ Carolas retrieval (DWL at 92.7 m)

 \rightarrow similar performing retrievals at 90 m

Quicklooks for mean wind on June 29, 2021 (Jogi)

↓ Markus retrieval

↓ Julians retrieval

\downarrow Carolas retrieval

 \rightarrow no azimuth correction

 \rightarrow higher vertical resol. with more zero wind

ightarrow less zero wind

Quicklooks for wind gusts on June 29, 2021 (Jogi)

↓ Julians retrieval

↓ Carolas retrieval

 \rightarrow (left) has higher vertical resolution, but may have more erroneous winds in the boundary regions than (right)

! You see only one example !

ftp uploads

erver: /data/fesstval/wind_and_gust/birkholz_dlidcsm/level2uzk	Server: /data/fesstval/dlid_4swind/birkholz_dlidcsm/level2uzk
 data data data did_4swind did_4swind did_rhi_and_ppi did_rhi_and_turb did_wind_and_turb wind_and_gust birkholz_dlidcsm level1 level2uzk falkenberg_dlidcsm falkenberg_sonic02m falkenberg_sonic0m falkenberg_dlidcsm indenberg_dlidcsm 	 Valariest vardid_stwind/bit któl2_didcshriever/ddx data did_4swind birkholz_dlidcsm birkholz_dlidcsm lindenberg_dlidcsm dlid_meanwind dlid_meanwind dlid_verticalwind dlid_wind_and_turb dlid_meanwind dlid_rhi_and_ppi dlid_verticalwind dlid_id_neanwind dlid_id_neanwind dlid_wind_and_turb dlid_verticalwind dlid_verticalwind dlid_id_verticalwind dlid_id_neanwind dlid_id_neanwind dlid_id_neanwind dlid_id_verticalwind dlid_verticalwind

Conclusion and prospect

Conclusion and prospect

- → Quick CSM can measure wind gust peaks ! and high-resolution wind patterns (triangle, tomorrow)
- ightarrow Proved at 90.3 m for both retrievals
 - ? Comparisons in higher levels (DWD, HH)
 - ? Comparisons with UAV flights (TÜB)
- → Especially noise around zero is challenging
 ! Paper in progress (Päschke, Detring)
 - ... The retrievals can be always improved ...

Steinheuer, Julian et al. (Jan. 2022). "A new scanning scheme and flexible retrieval for mean winds and gusts from Doppler lidar measurements". In: DOI: 10.5194/amt-2021-426. URL: https://doi.org/10.5194/amt-2021-426.

Two different approaches to derive wind gusts from Doppler wind lidar

J. Steinheuer^{1,2,4}, C. Detring³, E. Päschke³, F. Beyrich³, U. Löhnert^{1,2}

¹ Institute of Geophysics and Meteorology, Universität zu Köln, Cologne;

- ² Hans-Ertel Centre for Weather Research, Climate Monitoring and Diagnostics, Cologne/Bonn;
- ³ Deutscher Wetterdienst, Meteorologisches Observatorium Lindenberg Richard-Aßmann-Observatorium;
- ⁴ Julian.Steinheuer@uni-koeln.de

FESSTVaL Data Workshop Offenbach, May 18 - May 20, 2022