Investigation of Januarys Polar Low genesis conditions over the North Atlantic using satellite, reanalysis and model data for the period between 2003 and 2011

A. Radovan¹, S. Crewell¹, M. Mech¹, A. Rinke², E. M. Knudsen¹, C.Melsheimer³

Institute of Geophysics and Meteorology, University of Cologne, ²Alfred Wegener Institute, Helmholtz Centre for Polar and MarineResearch, ³Institute of Environmental Physics, University of Bremen

TRANSREGIO TR 172 | LEIPZIG | BREMEN | KÖLN

UNIVERSITÄT LEIPZIG

Introduction

Polar lows (PLs) are high latitude maritime cyclones whose characteristics are:

- small diameter (< 600 km)
- strong winds (> 15 m/s)
- short life time (can be only 3h)

Motivation

The AMSU –B (Advanced Microwave Sounding Unit –B) and the MHS (Microwave Humidity Sounder) onboard NOAA KLM and MetOp satellites, respectively offer an excellent coverage of the Arctic (\cong **10 times/day**). use satellite measurements together with We atmospheric reanalysis [2] to better understand PLs and to answer the following questions:

These cyclones bring large amounts of precipitation that combined with strong winds cause great damage to coastal communities but are still hard to predict.

20°E *Fig. 1:* January polar low cases (blue dots) between 2003-2011 using list of polar lows from Noer and Lien, 2010 [1]

Summary

AMSU-B observations	${f s}$ – able to detect PL with strongly precipitating clouds at 183.31 \pm 1, \pm 3, \pm 7 GHz	
frequencies		
ANASIL B simulations	able to represent DL and strongly presinitating clouds	

AMSU-B simulations – able to represent PL and strongly precipitating clouds

ASR genesis conditions – RH of \approx 85 % at \approx 1 km, LR –strong surface inversion, $T_{surf} - T_{500hPa}$ usually > 40 K

- 1. Can we detect the occurrence of PLs from microwave satellite observations?
- 2. Is atmospheric reanalysis able to represent the precipitation signature of PLs?
- 3. What are the conditions necessary for the genesis of PLs?

Results

Tools & Methods AMSU-B/MHS 5 channels 2 window: **3 around strong water vapor line:** 89 and 150 GHz and 183.31 ± 1, 183.31 ±3, 183.31 ± 7 (157 GHz MHS) GHz (190 GHz MHS)

ASR v1 – Arctic System Reanalysis version 1 with 30 km spatial resolution and 29 vertical levels that has best estimate of atmospheric state including precipitation

PAMTRA – **P**assive and **A**ctive **M**icrowave **R**adiative **TRA**nsfer that connects ASR to AMSU-B and is able to simulate the 1-800 GHz frequency range

 $\Delta T_{1.3} > 0$ $\Delta T_{1.7} > 0 \quad \Delta T_{3.7} > 0$

Fig 3: PL case on 7th, Jan, 2009 at 09:17UTC for 183.31±7 (left), 183.31±3 (middle) and 183.31±1 GHz (right) channels from AMSU-B observations (upper panel) and PAMTRA simulations (lower panel)

AMSU-B observations	AMSU-B simulations		
strong BT depression in the cloud bands	an availative at the Di		
around lows at 183.31 GHz channels	general structure of the PL		
183.31±7 GHz channel - largest difference			
between cloud and PL core at times reaching	able to represent precipitating clouds		
more than 40 K			
Possible reason for the disagreement:			
 coarser resolution of the ASR (at nadir point being double) 			
 ASR's parameterization of precipitation processes and the description of hydrometheors 			
in terms of size and density			

ASR - PL genesis conditions

- **RH**: max of \approx 85 % at \approx 1 km \bullet
- Wind speed ~ 7 m/s close to surface, with steady increase

-12 -9 -6 -3 0 3 6 9 12 -24 -18 -12 -6 0 6 12 18 24-24 -18 -12

Fig 2: Difference between: 183.31±1 *GHz and* 183.31±3 *GHz (left),* 183.31±1 *and* 183.31±7 *GHz* (*middle*) and 183.31 ± 3 and 183.31± 7 GHz (*right*) channels.

Next step

- extend study for the entire PL season (October-May)
- find the amount of precipitation brought by PL when making landfall using the disappearance of the convective cores
- use the HIRHAM5 regional model with 15 km resolution to simulate the PL cases

Acknowledgements

This work was supported by Transregional Collaborative Research Center TR172 "ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)³" funded by the German Research Foundation (DFG).

above2 km

- **LR** strong surface inversion
- T_{surf} and T_{500hPa} difference usually greater than 40 K
- Fig 4 Mean vertical profiles of RH, wind speed and lapse rates for a 200 km radius around

genesis point at genesis time (list of PLs [1]) for all 25 January cases. Red is the mean of all 25 cases and light blue shaded area is the one standard deviation.

References

[1] Noer and Lien 2010: Dates and Positions of Polar lows over the Nordic Seas between 2000 and 2010, NMI, no. 16/2010 [2] ASR data, Polar Meteorology Group at ByrdPolar and Climate Research Center, the Ohio State University, available at https://rda.ucar.edu/datasets/ds631.1/

[3] Melsheimer et al. 2015: Detectability of Polar Mesocyclones and Polar Lows in Data from Space-borne Microwave Humidity Sounder, IEEE, JSTARS, vol. 9, doi: 10.1109/JSTARS.2015.2499083

[4] Hong et al., 2009: Simulations of microwave brightness temperatures at AMSU-B frequencies over a 3D convective cloud systems, International Journal of Remote Sensing, vol.31, doi: 10.1080/01431160902926640

[5] Terpstra et al., 2015: Forward and Reverse Shear Environments during Polar Low Genesis over the Northeast Atlantic, Monthly Weather Review, doi: 10.1175/MWR-D-15-0314.1

Contact: aradovan@uni-koeln.de