User Tools

Site Tools


publications:reviewed_a

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
publications:reviewed_a [2022/06/07 14:43] – [2022] doripublications:reviewed_a [2024/03/27 19:57] (current) – [submitted] ischirma
Line 3: Line 3:
  
 //Working group members are given in **bold**.//   //File naming convention: author_et_al_yyyy_journal.pdf// \\ //Working group members are given in **bold**.//   //File naming convention: author_et_al_yyyy_journal.pdf// \\
-//**Please sort in alphabetical order!**//\\+//**<color #00a2e8>Please sort published papers in alphabetical order!</color>**//\\
 Example:\\ Example:\\
 **Marke, T., S. Crewell**, V. Schemann, **J. H. Schween**, and M. Tuononen, 2018: Long-Term Observations and High Resolution Modeling of Mid-Latitude Nocturnal Boundary-Layer Processes Connected to Low-Level-Jets,  //J. Appl. Meteor. Climatol.//, 57, 1155–1170, https://doi.org/10.1175/JAMC-D-17-0341.1. **Marke, T., S. Crewell**, V. Schemann, **J. H. Schween**, and M. Tuononen, 2018: Long-Term Observations and High Resolution Modeling of Mid-Latitude Nocturnal Boundary-Layer Processes Connected to Low-Level-Jets,  //J. Appl. Meteor. Climatol.//, 57, 1155–1170, https://doi.org/10.1175/JAMC-D-17-0341.1.
  
-==== submitted ====+==== submitted ==== 
  
-KingF., GDuffyLMilani, C. G. FletcherC. Pettersen and **KEbell**: DeepPrecip: A deep neural network for precipitation retrievals, //Machine Intelligence//, submitted on 3 May 2022+**ChatterjeeD.****SSchnitt**,** PBigalke****C. Acquistapace**, and  **SCrewell**, (2024). Capturing the Diversity of Mesoscale Trade Wind Cumuli Using Complementary Approaches from Self-Supervised Deep Learning. Geophysical Research Letters, https://doi.org/10.22541/essoar.170000384.49382400/v2
  
-JTPasquierJHennebergerFRamelli, A. LauberRO. David, J. WiederTCarlsen**RGierens**, M. Maturilliand U. LohmannConditions favorable for secondary ice production in Arctic mixed-phase clouds, //Atmos. Chem. Phys. Discuss.// [preprint], https://doi.org/10.5194/acp-2022-314, in review, 2022+Kirbus, B., **ISchirmacher**MKlingebielMSchäfer, A. EhrlichNSlättberg, J. LuckeMMoserHMüllerand M. Wendisch2023Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)3: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses. //Atmos. Chem. Phys.//,https://doi.org/10.5194/egusphere-2023-2989.
  
-ChelliniG., **RGierens**, and S. Kneifel: Ice aggregation in Arctic shallow mixed-phase cloudsenhanced by dendritic growth and absent close to the melting level, submitted to Journal of Geophysical Research - Atmospheres on 1.4.2022+**RisseN.**, **MMech**, C. Prigent, G. Spreen, and **S. Crewell**Assessing the sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations, //The Cryosphere//, submitted on 19 Jan 2024
  
-Rückert, J.E., PRostoskyMHuntemann, D. Clemens-Sewall, **KEbell**, L. Kaleschke, J. Lemmetyinen, A. Macfarlane, R. NaderpourJStroeve, **AWalbröl**, and G. Spreen: Effect of warm air intrusions on satellite-based sea ice concentration retrievals: A case study of the April 2020 events during the MOSAiC expedition, //Elementa: Science of the Anthropocene//, submitted on 15 March 2022+Rückert, J.E., **AWalbröl****NRisse**, **PKrobot**, R. Haseneder-Lind**MMech**, **KEbell**, and G. Spreen: Measuring microwave sea ice and ocean brightness 
 +temperature and emissivity between 22 and 243 GHz by ship-based radiometers with rotatable mirrors, //Annals of Glaciology//, submitted on 30 Dec 2023
  
-ChelliniG. and **KEbell**: Can state-of-the-art infrared satellite sounders and reanalyses detect moisture inversions in the Arctic?, //Atmos. MeasTech.//, submitted on 14 Jan 2022+**SchirmacherI.**, **S.Schnitt**, M. Klingebiel, N. Maherndl, B. Kirbus, A. Ehrlich, **M. Mech**, and **SCrewell**, 2024Clouds and precipitation in the initial phase of marine cold air 
 +outbreaks as observed by airborne remote sensing, //Atmos. ChemPhys.//, submitted on 26 Mar 2024.
  
-ChylikJ., ChechinD., Dupuy, R., **KullaBS.**Lüpkes, C., Mertes, S., **Mech, M.**, and NeggersRAJ.: Aerosol-cloud-turbulence interactions in well-coupled Arctic boundary layers over open water, Atmos. ChemPhys. Discuss. [preprint], [[https://doi.org/10.5194/acp-2021-888]], in review, 2021.+ArteagaD., C. PlancheFTridonR. Dupuy, ABaudouxS. BansonJ.-LBarayGMiocheAEhrlich, **M. Mech**, S. MertesMWendisch, WWobrock, and OJourdanArctic mixed-phase clouds simulated by the WRF model: Comparisons with ACLOUD radar and in situ airborne observations and sensitivity of microphysics properties//Atmos. Res.//, submitted on 10 Nov 2023.
  
 +**Walbröl, A.**, J. Michaelis, S. Becker, H. Dorff, I. Gorodetskaya, B. Kirbus, **M. Lauer**, N. Maherndl, M. Maturilli, J. Mayer, H. Müller, **R. A. J. Neggers**, **F. M. Paulus**, J. Röttenbacher, J. E. Rückert, **I. Schirmacher**,  N. Slättberg, A. Ehrlich, M. Wendisch, and **S. Crewell**: Environmental conditions in the North Atlantic sector of the Arctic during the HALO-(AC)3 campaign, //Atmos. Chem. Phys.//, https://doi.org/10.5194/egusphere-2023-668, in discussion since 13 April 2023
  
 +==== accepted ====
  
-Pasquier et al. (incl. **RGierens**, **KEbell**): Nascent campaign overview//Bulletin of the American Meteorological Society//, resubmitted 18 March 2022+Jaeschke, A.**CBöhm**, JSchweenE. Schefuß, M. A. Koch, C. Latorre, S. Contreras, J. Rethemeyer, H. Wissel, A. Lücke: Evaluating the isotopic composition of leaf organic compounds in fog-dependent Tillandsia landbeckii across the coastal Atacama Desert: Implications for hydroclimate reconstructions at the dry limit. //Global and Planetary Change//, accepted on 24 February 2024
  
-WendischM., et al(incl**S. Crewell****VSchemann**, **K. Ebell**, **RGierens****L.-LKliesch****MLauer**, **MMech**): Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)³ Project, //Bulletin of the American Meteorological Society//, submitted 21 December 2021+RückertJ.E., PRostosky, MHuntemannDClemens-Sewall, **K. Ebell**, LKaleschkeJLemmetyinen, AMacfarlaneRNaderpour, J. Stroeve, **AWalbröl**, and G. Spreen: Sea ice concentration satellite retrievals influenced by surface changes due to warm air intrusions: A case study from the MOSAiC expedition //Elementa: Science of the Anthropocene//, accepted on 10 October 2023
  
 +==== 2024 ====
  
-==== accepted ==== 
  
-von LerberA., **M. Mech**A. RinkeDZhang, **M. Lauer**, A. RadovanIGorodetskaya, **SCrewell**, 2022: Evaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic//Atmos. ChemPhys.// [[https://acp.copernicus.org/preprints/acp-2021-1064]] +MaherndlN., Moser, M., LuckeJ., **Mech, M.**, **RisseN.**, **Schirmacher, I.**, and Maahn, M.: Quantifying riming from airborne data during the HALO-(AC)3 campaign, Atmos. MeasTech., 17, 1475–1495, https://doi.org/10.5194/amt-17-1475-2024, 2024. 
  
-**Walbroel, A.**, **S. Crewell**, REngelmann, E. OrlandiHGriesche, M. Radenz, J. Hofer, D. Althausen, M. Maturilli, and **K. Ebell**: Atmospheric temperaturewater vapour and liquid water path from two microwave radiometers during MOSAiC, //Scientific Data//, submitted on 08 March 2022accepted on 27 May 2022+**Schnitt, S.**, A. Foth, H. Kalesse-Los, **M. Mech**, **C. Acquistapace**, F. Jansen, U. Löhnert, B. Pospichal, J. Röttenbacher, **S. Crewell**, und BStevens, 2024: Ground- and ship-based microwave radiometer measurements during EUREC$^4$A, //Earth Systems Science Data//,  16, 681–700, https://doi.org/10.5194/essd-16-681-2024 
 + 
 + 
 +==== 2023 ==== 
 +Bailey, A., Aemisegger, F., Villiger, L., Los, S. A., Reverdin, G., Quiñones Meléndez, E., **Acquistapace, C.**, Baranowski, D. B., Böck, T., Bony, S., Bordsdorff, T., Coffman, D., de Szoeke, S. P., Diekmann, C. J., Dütsch, M., Ertl, B., Galewsky, J., Henze, D., Makuch, P., Noone, D., Quinn, P. K., Rösch, M., Schneider, A., Schneider, M., Speich, S., Stevens, B., and Thompson, E. J., 2023: Isotopic measurements in water vapor, precipitation, and seawater during EUREC4A, //Earth Syst. Sci. Data//, 15, 465–495, [[https://doi.org/10.5194/essd-15-465-2023]]. 
 + 
 + 
 +**Chatterjee, D., Acquistapace, C.**, Deneke, H., **Crewell, S.**, 2023: Understanding cloud systems structure and organization using a machine’s self-learning approach, // Journal of Artificial Intelligence for the Earth Systems//, [[https://doi.org/10.1175/AIES-D-22-0096.1]] 
 + 
 +Chellini, G., **R. Gierens**, **K. Ebell**, T. Kiszler, **P. Krobot**, A. Myagkov, **V. Schemann**, and S. KneifelLow-level mixed-phase clouds at the high Arctic site of Ny-Ålesund: A comprehensive long-term dataset of remote sensing observations,  //Earth Syst. Sci. Data//, 15, 5427–5448, [[https://doi.org/10.5194/essd-15-5427-2023]] 
 + 
 +Chylik, J., Chechin, D., Dupuy, R., **Kulla, B. S.**, Lüpkes, C., Mertes, S., **Mech, M.**, and Neggers, R. A. J., 2023: Aerosol-cloud-turbulence interactions in well-coupled Arctic boundary layers over open water, //Atmos. Chem. Phys.//, 23, 4903–4929, [[https://doi.org/10.5194/acp-23-4903-2023]]. 
 + 
 +Heinemann, G., L. Schefczyk, R. Zentek, I. M. Brooks, S. Dahlke, and **A. Walbröl**, 2023: Evaluation of Vertical Profiles and Atmospheric Boundary Layer Structure Using the Regional Climate Model CCLM during MOSAiC, //Meteorology//, 2257-275, [[https://doi.org/10.3390/meteorology2020016]]. 
 + 
 +Kirbus, B. et al. (incl. **Crewell, S.**, **Ebell, K.**, **Lauer, M.**, **Rückert, J.**, **Walbröl A.**), 2023: Surface impacts and associated mechanisms of a moisture intrusion into the Arctic observed in mid-April 2020 during MOSAiC, //Frontiers in Earth Science//, //Sec. Atmospheric Science//, 11, [[https://doi.org/10.3389/feart.2023.1147848]]. 
 + 
 +Kiszler, T., **K. Ebell**, and **V. Schemann**, 2023: A performance baseline for the representation of clouds and humidity in cloud-resolving ICON-LEM simulations in the Arctic, //Journal of Advances in Modeling Earth Systems//, 15, e2022MS003299, [[https://doi.org/10.1029/2022MS003299]]. 
 + 
 +Klingebiel, M., A. Ehrlich, E. Ruiz-Donoso, **N. Risse**, **I. Schirmacher**, E. Jäkel, M. Schäfer, K. Wolf, **M. Mech**, M. Moser, C. Voigt, and M. Wendisch, 2023: Variability and properties of liquid-dominated clouds over the ice-free and sea-ice-covered Arctic Ocean, //Atmospheric Chemistry and Physics//, 23, 15289–15304, [[https://doi.org/10.5194/acp-23-15289-2023]]. 
 + 
 +**Lauer, M.**, A. Rinke, I. Gorodetskaya, M. Sprenger, **M. Mech**, **S. Crewell**, 2023: Influence of atmospheric rivers and associated weather systems on precipitation in the Arctic, // Atmospheric Chemistry and Physics//, 23, 8705–8726, [[https://doi.org/10.5194/acp-23-8705-2023]]. 
 + 
 +Maherndl, N., Maahn, M., Tridon, F., Leinonen, J., **Ori, D.** Kneifel, S. 2023: A riming-dependent parameterization of scattering by snowflakes using the self-similar Rayleigh–Gans approximation, //Quarterly Journal of the Royal Meteorological Society//, 1–20. [[https://doi.org/10.1002/qj.4573]]. 
 + 
 +Moser, M., C. Voigt, T. Jurkat-Witschas, V. Hahn, G. Mioche, O. Jourdan, R. Dupuy, C. Gourbeyre, A. Schwarzenboeck, J. Lucke, Y. Boose, **M. Mech**, S. Borrmann, A. Ehrlich, A. Herber, C. Lüpkes, and M. Wendisch, 2023: Microphysical and thermodynamic phase analyses of Arctic low-level clouds measured above the sea ice and the open ocean in spring and summer, //Atmospheric Chemistry and Physics//, 23, 7257–7280, [[https://doi.org/10.5194/acp-23-7257-2023]]. 
 + 
 +Pasquier, J. T., J. Henneberger, A. Korolev, F. Ramelli, J. Wieder, A. Lauber, G. Li, R. O. David, T. Carlsen, **R. Gierens**, M. Maturilli, and U. Lohmann, 2023: Understanding the history of complex ice crystal habits deduced from a holographic imager, //Geophysical Research Letters//, 50, e2022GL100247, [[https://doi.org/10.1029/2022GL100247]]. 
 + 
 +Reyers, M., S. Fiedler, P. Ludwig, **C. Böhm**, V. Wennrich, and Y. Shao, 2023: On the importance of moisture conveyor belts from the tropical East Pacific for wetter conditions in the Atacama Desert during the Mid-Pliocene, //Climate of the Past//, 19, 517–532, [[https://doi.org/10.5194/cp-19-517-2023]]. 
 + 
 +**Schirmacher, I**, P. Kollias, K. Lamer, **M. Mech**, L. Pfitzenmaier, M. Wendisch, and **S. Crewell**, 2023: Assessing Arctic low-level clouds and precipitation from above – a radar perspective, //Atmospheric Measurement Techniques//, 16(17), 4081 - 4100, [[https://doi.org/10.5194/amt-16-4081-2023]]. 
 + 
 +Sun X., W. Amelung, E. Klumpp, J. Walk, R. Mörchen, **C. Böhm**, G. Moradi, S. M. May, F. Tamburini, Y. Wang, R. Bol, 2023: Fog controls biological cycling of soil P in Coastal Cordillera of the Atacama. //Global Change Biology//, 30(1), e17068, https://doi.org/10.1111/gcb.17068 
 + 
 +**Vicencio, J.**, **C. Böhm**, J.H. Schween, U. Löhnert, and **S. Crewell**, 2023: A comparative study of the atmospheric water vapor in the Atacama and Namib Desert, //Global and Planetary Change//, 104320, [[https://doi.org/10.1016/j.gloplacha.2023.104320]]. 
 + 
 +Vinjamuri, K. S., M. Vountas, L. Lelli, M. Stenger, M. D. Shupe, **K. Ebell**, and J. P. Burrows, 2023: Validation of the Cloud_CCI cloud products in the Arctic, //Atmos. Meas. Tech.//, 16, 2903–2918, [[https://doi.org/10.5194/amt-16-2903-2023]]. 
 + 
 +Wendisch, M., et al. (incl. **S. Crewell**, **V. Schemann**, **K. Ebell**, **R. Gierens**, **L.-L. Kliesch**, **M. Lauer**, **M. Mech**), 2023: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)³ Project, //Bulletin of the American Meteorological Society//, 104(1), E208-E242, [[https://doi.org/10.1175/BAMS-D-21-0218.1]]. 
 + 
 +Wennrich, V., **C. Böhm**, D. Brill, R. Carballeira, D. Hoffmeister, A. Jaeschke, F. Kerber, A. Maldonado, S. M. May, L. Olivares, S. Opitz, J. Rethemeyer, M. Reyers, B. Ritter, J. H. Schween, F. Sevinç, J. Steiner, K. Walber-Hellmann, M. Melles, 2023: Late Pleistocene to modern precipitation changes at the Paranal clay pan, central Atacama Desert. //Global and Planetary Change//, 233, 104349, https://doi.org/10.1016/j.gloplacha.2023.104349
  
-Jia, H., J. Quaas, E. Gryspeerdt, **C. Böhm**, O. Sourdeval, 2022: Addressing the difficulties in quantifying the Twomey effect for marine warm clouds from multi-sensor satellite observations and reanalysis, //Atmos. Chem. Phys.// [[https://doi.org/10.5194/acp-2021-999]]  
 ==== 2022 ==== ==== 2022 ====
 +
 +**Acquistapace C.**, A.N. Meroni, G. Labbri, D. Lange, F. Späth, S. Abbas, and H. Bellenger, 2022: Fast atmospheric response to an SST mesoscale cold patch in the north-western subtropical Atlantic, //Journal of Geophysical Research - Atmosphere//, 127, e2022JD036799, [[https://doi.org/10.1029/2022JD036799]]
  
  
 **Acquistapace, C.**, **N. Risse**, **J. H. Schween**, **R. Gierens**, **S. Crewell**, A. Garcia-Benadi, R. Coulter, G. Labbri, and A. Myagkov, 2022: EUREC4A's Maria S. Merian ship-based cloud and micro rain radar observations of clouds and precipitation, //Earth System Science Data//, Special Issue: Elucidating the role of clouds–circulation coupling in climate: datasets from the 2020 (EUREC4A) field campaign, Earth System Science Data, 14, 33–55,[[https://essd.copernicus.org/articles/14/33/2022]] **Acquistapace, C.**, **N. Risse**, **J. H. Schween**, **R. Gierens**, **S. Crewell**, A. Garcia-Benadi, R. Coulter, G. Labbri, and A. Myagkov, 2022: EUREC4A's Maria S. Merian ship-based cloud and micro rain radar observations of clouds and precipitation, //Earth System Science Data//, Special Issue: Elucidating the role of clouds–circulation coupling in climate: datasets from the 2020 (EUREC4A) field campaign, Earth System Science Data, 14, 33–55,[[https://essd.copernicus.org/articles/14/33/2022]]
  
-Arenas-Diaz, F., B. Fuentes, M. Reyers, S. Fiedler, **C. Böhm**, E. Campos, Y. Shao,  R. Bol, 2022: Atmospheric deposition in the Atacama Desert, //Earth-Science Reviews//, 226, 103925, [[https://doi.org/10.1016/j.earscirev.2022.103925]]+Arenas-Diaz, F., B. Fuentes, M. Reyers, S. Fiedler, **C. Böhm**, E. Campos, Y. Shao,  R. Bol, 2022: Dust and aerosols in the Atacama Desert, //Earth-Science Reviews//, 226, 103925, [[https://doi.org/10.1016/j.earscirev.2022.103925]] 
 + 
 +Braun D., **K. Ebell**, **V. Schemann**, L. Pelchmann, **S. Crewell**, R. Borgo, T. von Landesberger, 2022: Color Coding of Large Value Ranges Applied to Meteorological Data, //IEEE Visualization and Visual Analytics (VIS)//, Oklahoma City, OK, USA, 2022, pp. 125-129, [[https://doi.org/10.1109/VIS54862.2022.00034]]
  
 Bresson, H., A. Rinke, **M. Mech**, D. Reinert, **V. Schemann**, **K. Ebell**, M. Maturilli, C. Viceto, I. Gorodetskaya, and **S. Crewell**, 2022: Case study of a moisture intrusion over the Arctic with the ICON model: resolution dependence of its representation, //Atmospheric Chemistry and Physics//, 22, 173–196, [[https://doi.org/10.5194/acp-22-173-2022]] Bresson, H., A. Rinke, **M. Mech**, D. Reinert, **V. Schemann**, **K. Ebell**, M. Maturilli, C. Viceto, I. Gorodetskaya, and **S. Crewell**, 2022: Case study of a moisture intrusion over the Arctic with the ICON model: resolution dependence of its representation, //Atmospheric Chemistry and Physics//, 22, 173–196, [[https://doi.org/10.5194/acp-22-173-2022]]
  
-Geerts, Bart, et al. (incl. **S.Crewell**, **K. Ebell**), 2022: The COMBLE campaign: a study of marine boundary-layer clouds in Arctic cold-air outbreaks, //Bulletin of the American Meteorological Society//, [[https://doi.org/10.1175/BAMS-D-21-0044.1]] published online 3 March 2022. + 
 +Chellini, G., **R. Gierens**, and S. Kneifel, 2022: Ice Aggregation in Low-Level Mixed-Phase Clouds at a High Arctic Site: Enhanced by Dendritic Growth and Absent Close to the Melting Level, //Journal of Geophysical Research: Atmospheres//, 127, e2022JD036860, [[https://doi.org/10.1029/2022JD036860]] 
 + 
 + 
 +Geerts, B., et al. (incl. **S. Crewell**, **K. Ebell**), 2022: The COMBLE campaign: a study of marine boundary-layer clouds in Arctic cold-air outbreaks, //Bulletin of the American Meteorological Society//, 103, 5, E1371-E1389 [[https://doi.org/10.1175/BAMS-D-21-0044.1]] 
 + 
 +Jia, H., J. Quaas, E. Gryspeerdt, **C. Böhm**, O. Sourdeval, 2022: Addressing the difficulties in quantifying the Twomey effect for marine warm clouds from multi-sensor satellite observations and reanalysis, //AtmosChem. Phys.//, 22, 7353–7372, [[https://doi.org/10.5194/acp-22-7353-2022]]  
 + 
 +King, F., G. Duffy, L. Milani, C. G. Fletcher, C. Pettersen and **K. Ebell**, 2022: DeepPrecip: a deep neural network for precipitation retrievals, // Atmos. Meas. Tech.//, 15, 6035–6050, https://doi.org/10.5194/amt-15-6035-2022 
  
 Kneifel, S., B. Pospichal, L. von Terzi, T. Zinner, M. Puh, M. Hagen, B. Mayer, U. Löhnert and **S. Crewell**, 2022: Multi-year cloud and precipitation statistics observed with remote sensors at the high-altitude Environmental Research Station Schneefernerhaus in the German Alps, //Meteorologische Zeitschrift//, 31 (1), 69-86, [[https://doi.org/10.1127/metz/2021/1099]] Kneifel, S., B. Pospichal, L. von Terzi, T. Zinner, M. Puh, M. Hagen, B. Mayer, U. Löhnert and **S. Crewell**, 2022: Multi-year cloud and precipitation statistics observed with remote sensors at the high-altitude Environmental Research Station Schneefernerhaus in the German Alps, //Meteorologische Zeitschrift//, 31 (1), 69-86, [[https://doi.org/10.1127/metz/2021/1099]]
  
-Myagkov, A. and **Ori, D.**, 2022: Analytic characterization of random errors in spectral dual-polarized cloud radar observations, //Atmospheric Measurement Techniques//, 15, 1333–1354, [[https://doi.org/10.5194/amt-15-1333-2022]]+von Lerber, A., **M. Mech**, A. Rinke, D. Zhang, **M. Lauer**, **A. Radovan**, I. Gorodetskaya, and **S. Crewell**, 2022: Evaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic, //Atmospheric Chemistry Physics//, 22, 7287-7317,  [[https://doi.org/10.5194/acp-22-7287-2022]]  
 + 
 + 
 +**Mech, M.,** A. Ehrlich, A. Herber, C. Luepkes, M. Wendisch, S. Becker, Y. Boose, D. Chechin, **S. Crewell**, R. Dupuy, C. Gourbeyre, J. Hartmann, E. Jaekel, O. Jourdan, **L.-L. Kliesch**, M. Klingebiel, **B.S. Kulla**, G. Mioche, M. Moser, **N. Risse**, E. Ruiz-Donoso, M. Schaefer, J. Stapf, and C. Voigt, 2022: MOSAiC-ACA and AFLUX - Arctic airborne campaigns characterizing the exit area of MOSAiC, //Scientific Data//, 9, 790, [[https://doi.org/10.1038/s41597-022-01900-7]]. 
 + 
 +Myagkov, A. and **D. Ori**, 2022: Analytic characterization of random errors in spectral dual-polarized cloud radar observations, //Atmospheric Measurement Techniques//, 15, 1333–1354, [[https://doi.org/10.5194/amt-15-1333-2022]] 
 + 
 + 
 +Pasquier, J. T., R. O. David, G. Freitas, **R. Gierens**, Y. Gramlich, S. Haslett, G. Li, B. Schäfer, K. Siegel, J. Wieder, K. Adachi, F. Belosi, T. Carlsen, S. Decesari, **K. Ebell**, S. Gilardoni, M. Gysel-Beer, J. Henneberger, J. Inoue, Z.A. Kanji, M. Koike, Y. Kondo, R. Krejci, U. Lohmann, M. Maturilli, M. Mazzolla, R. Modini, C. Mohr, G. Motos, A. Nenes, A. Nicosia, S. Ohata, M. Paglione, S. Park, R.E. Pileci, F. Ramelli, M. Rinaldi, C. Ritter, K. Sato, T. Storelvmo, Y. Tobo, R. Traversi, A. Viola, and P. Zieger, 2022: The Ny-Ålesund Aerosol Cloud Experiment (NASCENT): Overview and First Results, //Bulletin of the American Meteorological Society//, 103(11), E2533-E2558. [[https://doi.org/10.1175/BAMS-D-21-0034.1]]  
 + 
 +Pasquier, J. T., J. Henneberger, F. Ramelli, A. Lauber, R. O. David, J. Wieder, T. Carlsen, **R. Gierens**, M. Maturilli, and U. Lohmann, 2022: Conditions favorable for secondary ice production in Arctic mixed-phase clouds, //Atmospheric Chemistry and Physics//, 22, 15579-15601. [[https://doi.org/10.5194/acp-22-15579-2022]] 
 + 
 +Shupe et al. (incl. **S. Crewell**, **K. Ebell**, **M. Mech**), 2022: Overview of the MOSAiC Expedition—Atmosphere. //Elementa: Science of the Anthropocene//, 10(1), [[https://doi.org/10.1525/elementa.2021.00060]] 
 + 
 +Viceto, C., I. V. Gorodetskaya, A. Rinke, M. Maturilli, A. Rocha, and **S. Crewell**, 2022: Atmospheric rivers and associated precipitation patterns during the ACLOUD and PASCAL campaigns near Svalbard (May–June 2017): case studies using observations, reanalyses, and a regional climate model, //Atmospheric Chemistry and Physics//, 22, 441–463, [[https://doi.org/10.5194/acp-22-441-2022]]
  
-Shupe et al(incl. **SCrewell**, **KEbell****MMech**), 2022: Overview of the MOSAiC Expedition—Atmosphere. Elementa: Science of the Anthropocene 10(1). DOI: [[https://doi.org/10.1525/elementa.2021.00060]]+von Terzi, L., Dias Neto, J.**Ori, D.**, Myagkov, A., and Kneifel, S., 2022: Ice microphysical processes in the dendritic growth layera statistical analysis combining multi-frequency and polarimetric Doppler cloud radar observations, //Atmospheric Chemistry and Physics//, 22, 11795–11821, [[https://doi.org/10.5194/acp-22-11795-2022]]
  
-VicetoC., GorodetskayaIV., Rinke, A., Maturilli, M., RochaA., and **SCrewell**, 2022: Atmospheric rivers and associated precipitation patterns during the ACLOUD and PASCAL campaigns near Svalbard (May–June 2017): case studies using observations, reanalyses, and a regional climate model, //Atmospheric Chemistry and Physics//, 22, 441–463, [[https://doi.org/10.5194/acp-22-441-2022]]+**WalbroelA.****S. Crewell**REngelmann, EOrlandiHGriesche, M. RadenzJ. HoferDAlthausen, M. Maturilli, and **KEbell**,2022: Atmospheric temperaturewater vapour and liquid water path from two microwave radiometers during MOSAiC. //Scientific Data// 9534, [[https://doi.org/10.1038/s41597-022-01504-1]].
  
 ==== 2021 ==== ==== 2021 ====
  
-Bock, O., P. Bosser, C. Flamant, E. Doerflinger, F. Janssen, R. Fages, S.Bony and **S.Schnitt**, 2021: IWV observations in the Caribbean Arc from a network of ground-based GNSS receivers during EUREC4A, Earth Syst. Sci. Data, [[https://doi.org/10.5194/essd-13-2407-2021]].+Bock, O., P. Bosser, C. Flamant, E. Doerflinger, F. Janssen, R. Fages, S.Bony and **S.Schnitt**, 2021: IWV observations in the Caribbean Arc from a network of ground-based GNSS receivers during EUREC4A, Earth System Science Data, [[https://doi.org/10.5194/essd-13-2407-2021]].
  
-**Böhm, C.**, J. H. Schween, M. Reyers, B. Maier, U. Löhnert, **S. Crewell**, 2021a: Towards a climatology of fog frequency in the Atacama Desert via multi-spectral satellite data and machine learning techniques, //Journal of Applied Meteorology and Climatology//, [[https://doi.org/10.1175/JAMC-D-20-0208.1]] +**Böhm, C.**, J. H. Schween, M. Reyers, B. Maier, U. Löhnert, **S. Crewell**, 2021: Towards a climatology of fog frequency in the Atacama Desert via multi-spectral satellite data and machine learning techniques, //Journal of Applied Meteorology and Climatology//, [[https://doi.org/10.1175/JAMC-D-20-0208.1]] 
  
-**Böhm, C.**, M. Reyers, L. Knarr, **S. Crewell**, 2021b: The role of moisture conveyor belts for precipitation in the Atacama Desert, //Geophysical Research Letters//, (48) 24, [[http://dx.doi.org/10.1029/2021GL094372]]+**Böhm, C.**, M. Reyers, L. Knarr, **S. Crewell**, 2021: The role of moisture conveyor belts for precipitation in the Atacama Desert, //Geophysical Research Letters//, (48) 24, [[http://dx.doi.org/10.1029/2021GL094372]]
          
-**Crewell, C.**, **K. Ebell, P. Konjari, M. Mech, T. Nomokonova, A. Radovan, D. Strack**, A. M. Triana Gomez, S. Noel, R. Scarlat, G. Spreen, M. Maturilli, A. Rinke, I. Gorodetskaya, C. Viceto, T. August, and M. Schröder, 2021: A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means, //Atmospheric Measurement Techniques// (14) 7, [[https://doi.org/10.5194/amt-14-4829-2021]] +**Crewell, C.**, **K. Ebell, P. Konjari, M. Mech, T. Nomokonova, A. Radovan, D. Strack**, A. M. Triana Gomez, S. Noel, R. Scarlat, G. Spreen, M. Maturilli, A. Rinke, I. Gorodetskaya, C. Viceto, T. August, and M. Schröder, 2021: A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means, //Atmospheric Measurement Techniques// (14) 7, 4829-4856, [[https://doi.org/10.5194/amt-14-4829-2021]] 
  
 **Frank, C.**, S. Fiedler, **S. Crewell**, 2021: Balancing potential of natural variability and extremes in photovoltaic and wind energy production for European countries, //Renewable Energy//, 163,  674-684, [[https://doi.org/10.1016/j.renene.2020.07.103]] **Frank, C.**, S. Fiedler, **S. Crewell**, 2021: Balancing potential of natural variability and extremes in photovoltaic and wind energy production for European countries, //Renewable Energy//, 163,  674-684, [[https://doi.org/10.1016/j.renene.2020.07.103]]
Line 70: Line 140:
 Karlsson, L., R. Krejci, M. Koike, **K. Ebell**, and P. Zieger, 2021: A long-term study of cloud residuals from low-level Arctic clouds, //Atmos. Chem. Phys.//, 21, 8933–8959, [[https://doi.org/10.5194/acp-21-8933-2021]] Karlsson, L., R. Krejci, M. Koike, **K. Ebell**, and P. Zieger, 2021: A long-term study of cloud residuals from low-level Arctic clouds, //Atmos. Chem. Phys.//, 21, 8933–8959, [[https://doi.org/10.5194/acp-21-8933-2021]]
  
-Karrer, M., Seifert, A., Ori, D., and Kneifel, S., 2021: Improving the representation of aggregation in a two-moment microphysical scheme with statistics of multi-frequency Doppler radar observations, Atmospheric Chemistry Physics, 21, 17133–17166, [[https://doi.org/10.5194/acp-21-1713]]+Karrer, M., Seifert, A., **Ori, D.**, and Kneifel, S., 2021: Improving the representation of aggregation in a two-moment microphysical scheme with statistics of multi-frequency Doppler radar observations, Atmospheric Chemistry Physics, 21, 17133–17166, [[https://doi.org/10.5194/acp-21-1713]]
  
 Konow, H., F. Ewald, G. George, **M. Jacob**, M. Klingebiel, T. Kölling, A. E. Luebke, T. Mieslinger, V. Pörtge, J. Radtke, M. Schäfer, H. Schulz, R. Vogel, M. Wirth, S. Bony, **S. Crewell**, A. Ehrlich, L. Forster, A. Giez, F. Gödde, S. Groß, M. Gutleben, M. Hagen, L. Hirsch, F. Jansen, T. Lang, B. Mayer, **M. Mech**, M. Prange, **S. Schnitt**, J. Vial, **A. Walbröl**, M. Wendisch, K. Wolf, T. Zinner, M. Zöger, F. Ament, and B. Stevens, 2021: EUREC4A’s HALO, //Earth System Science Data//,13 , 5545–5563, [[https://doi.org/10.5194/essd-13-5545-2021]] Konow, H., F. Ewald, G. George, **M. Jacob**, M. Klingebiel, T. Kölling, A. E. Luebke, T. Mieslinger, V. Pörtge, J. Radtke, M. Schäfer, H. Schulz, R. Vogel, M. Wirth, S. Bony, **S. Crewell**, A. Ehrlich, L. Forster, A. Giez, F. Gödde, S. Groß, M. Gutleben, M. Hagen, L. Hirsch, F. Jansen, T. Lang, B. Mayer, **M. Mech**, M. Prange, **S. Schnitt**, J. Vial, **A. Walbröl**, M. Wendisch, K. Wolf, T. Zinner, M. Zöger, F. Ament, and B. Stevens, 2021: EUREC4A’s HALO, //Earth System Science Data//,13 , 5545–5563, [[https://doi.org/10.5194/essd-13-5545-2021]]
  
-Mróz, K., Battaglia, A., Kneifel, S., von Terzi, L., Karrer, M., and Ori, D., 2021: Linking rain into ice microphysics across the melting layer in stratiform rain: a closure study, Atmospheric Measurement Techniques, 14, 511–529, [[https://doi.org/10.5194/amt-14-511-2021]]+Mróz, K., Battaglia, A., Kneifel, S., von Terzi, L., Karrer, M., and **Ori, D.**, 2021: Linking rain into ice microphysics across the melting layer in stratiform rain: a closure study, Atmospheric Measurement Techniques, 14, 511–529, [[https://doi.org/10.5194/amt-14-511-2021]]
  
-Ori, D., von Terzi, L., Karrer, M., and Kneifel, S., 2021: snowScatt 1.0: consistent model of microphysical and scattering properties of rimed and unrimed snowflakes based on the self-similar Rayleigh–Gans approximation, Geoscientific Model Development, 14, 1511–1531, [[https://doi.org/10.5194/gmd-14-1511-2021]]+**Ori, D.**, von Terzi, L., Karrer, M., and Kneifel, S., 2021: snowScatt 1.0: consistent model of microphysical and scattering properties of rimed and unrimed snowflakes based on the self-similar Rayleigh–Gans approximation, Geoscientific Model Development, 14, 1511–1531, [[https://doi.org/10.5194/gmd-14-1511-2021]]
  
 Reyers, M., **C. Böhm**,  L. Knarr Y. Shao, and **S. Crewell**,2021: Synoptic-to-regional scale analysis of rainfall in the Atacama Desert (18°S-26°S) using a long-term simulation with WRF, //Monthly Weather Review//, 148 (8), 1-51, [[https://doi.org/10.1175/MWR-D-20-0038.1]] Reyers, M., **C. Böhm**,  L. Knarr Y. Shao, and **S. Crewell**,2021: Synoptic-to-regional scale analysis of rainfall in the Atacama Desert (18°S-26°S) using a long-term simulation with WRF, //Monthly Weather Review//, 148 (8), 1-51, [[https://doi.org/10.1175/MWR-D-20-0038.1]]
Line 84: Line 154:
 Stephan, C., **C. Acquistapace**, **T. Böck**, **S. Schnitt**, et al., 2021: Ship- and island-based atmospheric soundings from the 2020 EUREC4A field campaign, //Earth System Science Data//, 13, 491–514, [[https://doi.org/10.5194/essd-13-491-2021]] Stephan, C., **C. Acquistapace**, **T. Böck**, **S. Schnitt**, et al., 2021: Ship- and island-based atmospheric soundings from the 2020 EUREC4A field campaign, //Earth System Science Data//, 13, 491–514, [[https://doi.org/10.5194/essd-13-491-2021]]
  
-Stevens, B, et al. including **C.Acquistapace**, **S.Crewell**, **M.Jacob**, **M.Mech**, **S.Schnitt**, 2021: EUREC4A, Earth System Science Data, 13 (8), 4067–4119, [[https://essd.copernicus.org/articles/13/4067/2021/]]+Stevens, B, et al. including **C. Acquistapace**, **S. Crewell**, **M. Jacob**, **M. Mech**, **S. Schnitt**, 2021: EUREC4A, Earth System Science Data, 13 (8), 4067–4119, [[https://doi.org/10.5194/essd-13-4067-2021]]
publications/reviewed_a.1654605819.txt.gz · Last modified: 2022/06/07 14:43 by dori