User Tools

Site Tools


publications:reviewed_a

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
publications:reviewed_a [2024/03/27 19:56] – [2024] ischirmapublications:reviewed_a [2024/05/06 09:27] – [submitted] jvicenc1
Line 11: Line 11:
 **Chatterjee, D.**, **S. Schnitt**,** P. Bigalke**, **C. Acquistapace**, and  **S. Crewell**, (2024). Capturing the Diversity of Mesoscale Trade Wind Cumuli Using Complementary Approaches from Self-Supervised Deep Learning. Geophysical Research Letters, https://doi.org/10.22541/essoar.170000384.49382400/v2 **Chatterjee, D.**, **S. Schnitt**,** P. Bigalke**, **C. Acquistapace**, and  **S. Crewell**, (2024). Capturing the Diversity of Mesoscale Trade Wind Cumuli Using Complementary Approaches from Self-Supervised Deep Learning. Geophysical Research Letters, https://doi.org/10.22541/essoar.170000384.49382400/v2
  
-Benjamin Kirbus, **Imke Schirmacher**, Marcus Klingebiel, Michael Schäfer, André Ehrlich, Nils Slättberg, Johannes Lucke, Manuel Moser, Hanno Müller, and Manfred Wendisch, 2023: Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)3: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses. //Atmos. Chem. Phys.//,https://doi.org/10.5194/egusphere-2023-2989.+
  
 **Risse, N.**, **M. Mech**, C. Prigent, G. Spreen, and **S. Crewell**: Assessing the sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations, //The Cryosphere//, submitted on 19 Jan 2024 **Risse, N.**, **M. Mech**, C. Prigent, G. Spreen, and **S. Crewell**: Assessing the sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations, //The Cryosphere//, submitted on 19 Jan 2024
Line 22: Line 22:
  
 Arteaga, D., C. Planche, F. Tridon, R. Dupuy, A. Baudoux, S. Banson, J.-L. Baray, G. Mioche, A. Ehrlich, **M. Mech**, S. Mertes, M. Wendisch, W. Wobrock, and O. Jourdan: Arctic mixed-phase clouds simulated by the WRF model: Comparisons with ACLOUD radar and in situ airborne observations and sensitivity of microphysics properties, //Atmos. Res.//, submitted on 10 Nov 2023. Arteaga, D., C. Planche, F. Tridon, R. Dupuy, A. Baudoux, S. Banson, J.-L. Baray, G. Mioche, A. Ehrlich, **M. Mech**, S. Mertes, M. Wendisch, W. Wobrock, and O. Jourdan: Arctic mixed-phase clouds simulated by the WRF model: Comparisons with ACLOUD radar and in situ airborne observations and sensitivity of microphysics properties, //Atmos. Res.//, submitted on 10 Nov 2023.
 +
 +**Vicencio, J.**, **C. Böhm**, J.H. Schween, U. Löhnert, and **S. Crewell**, 2023: The overlooked role of westerly moisture as a source of summer rainfall in the hyperarid Atacama Desert, //JGR Atmosphere//, submitted on 17 Feb 2024, [[https://doi.org/10.22541/essoar.171322686.60605286/v1]].
  
 **Walbröl, A.**, J. Michaelis, S. Becker, H. Dorff, I. Gorodetskaya, B. Kirbus, **M. Lauer**, N. Maherndl, M. Maturilli, J. Mayer, H. Müller, **R. A. J. Neggers**, **F. M. Paulus**, J. Röttenbacher, J. E. Rückert, **I. Schirmacher**,  N. Slättberg, A. Ehrlich, M. Wendisch, and **S. Crewell**: Environmental conditions in the North Atlantic sector of the Arctic during the HALO-(AC)3 campaign, //Atmos. Chem. Phys.//, https://doi.org/10.5194/egusphere-2023-668, in discussion since 13 April 2023 **Walbröl, A.**, J. Michaelis, S. Becker, H. Dorff, I. Gorodetskaya, B. Kirbus, **M. Lauer**, N. Maherndl, M. Maturilli, J. Mayer, H. Müller, **R. A. J. Neggers**, **F. M. Paulus**, J. Röttenbacher, J. E. Rückert, **I. Schirmacher**,  N. Slättberg, A. Ehrlich, M. Wendisch, and **S. Crewell**: Environmental conditions in the North Atlantic sector of the Arctic during the HALO-(AC)3 campaign, //Atmos. Chem. Phys.//, https://doi.org/10.5194/egusphere-2023-668, in discussion since 13 April 2023
  
 ==== accepted ==== ==== accepted ====
- 
-Jaeschke, A., **C. Böhm**, J. Schween, E. Schefuß, M. A. Koch, C. Latorre, S. Contreras, J. Rethemeyer, H. Wissel, A. Lücke: Evaluating the isotopic composition of leaf organic compounds in fog-dependent Tillandsia landbeckii across the coastal Atacama Desert: Implications for hydroclimate reconstructions at the dry limit. //Global and Planetary Change//, accepted on 24 February 2024 
  
 Rückert, J.E., P. Rostosky, M. Huntemann, D. Clemens-Sewall, **K. Ebell**, L. Kaleschke, J. Lemmetyinen, A. Macfarlane, R. Naderpour, J. Stroeve, **A. Walbröl**, and G. Spreen: Sea ice concentration satellite retrievals influenced by surface changes due to warm air intrusions: A case study from the MOSAiC expedition //Elementa: Science of the Anthropocene//, accepted on 10 October 2023 Rückert, J.E., P. Rostosky, M. Huntemann, D. Clemens-Sewall, **K. Ebell**, L. Kaleschke, J. Lemmetyinen, A. Macfarlane, R. Naderpour, J. Stroeve, **A. Walbröl**, and G. Spreen: Sea ice concentration satellite retrievals influenced by surface changes due to warm air intrusions: A case study from the MOSAiC expedition //Elementa: Science of the Anthropocene//, accepted on 10 October 2023
Line 33: Line 33:
 ==== 2024 ==== ==== 2024 ====
  
 +
 +Jaeschke, A., **C. Böhm**, J. Schween, E. Schefuß, M. A. Koch, C. Latorre, S. Contreras, J. Rethemeyer, H. Wissel, A. Lücke, 2024: Evaluating the isotopic composition of leaf organic compounds in fog-dependent Tillandsia landbeckii across the coastal Atacama Desert: Implications for hydroclimate reconstructions at the dry limit. //Global and Planetary Change//, 235, 104393, [[https://doi.org/10.1016/j.gloplacha.2024.104393]]
 +
 +Kirbus, B., **I. Schirmacher**, M. Klingebiel, M. Schäfer, A. Ehrlich, N. Slättberg, J. Lucke, M. Moser, H. Müller, and M. Wendisch, 2024: Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)3: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses. //Atmos. Chem. Phys.//,24, 3883–3904, https://doi.org/10.5194/acp-24-3883-2024
  
 Maherndl, N., Moser, M., Lucke, J., **Mech, M.**, **Risse, N.**, **Schirmacher, I.**, and Maahn, M.: Quantifying riming from airborne data during the HALO-(AC)3 campaign, Atmos. Meas. Tech., 17, 1475–1495, https://doi.org/10.5194/amt-17-1475-2024, 2024.  Maherndl, N., Moser, M., Lucke, J., **Mech, M.**, **Risse, N.**, **Schirmacher, I.**, and Maahn, M.: Quantifying riming from airborne data during the HALO-(AC)3 campaign, Atmos. Meas. Tech., 17, 1475–1495, https://doi.org/10.5194/amt-17-1475-2024, 2024. 
Line 38: Line 42:
 **Schnitt, S.**, A. Foth, H. Kalesse-Los, **M. Mech**, **C. Acquistapace**, F. Jansen, U. Löhnert, B. Pospichal, J. Röttenbacher, **S. Crewell**, und B. Stevens, 2024: Ground- and ship-based microwave radiometer measurements during EUREC$^4$A, //Earth Systems Science Data//,  16, 681–700, https://doi.org/10.5194/essd-16-681-2024 **Schnitt, S.**, A. Foth, H. Kalesse-Los, **M. Mech**, **C. Acquistapace**, F. Jansen, U. Löhnert, B. Pospichal, J. Röttenbacher, **S. Crewell**, und B. Stevens, 2024: Ground- and ship-based microwave radiometer measurements during EUREC$^4$A, //Earth Systems Science Data//,  16, 681–700, https://doi.org/10.5194/essd-16-681-2024
  
 +Stevens, B., Adami, S., Ali, T., Anzt, H., Aslan, Z., Attinger, S., Bäck, J., Baehr, J., Bauer, P., Bernier, N., Bishop, B., Bockelmann, H., Bony, S., Brasseur, G., Bresch, D. N., Breyer, S., Brunet, G., Buttigieg, P. L., Cao, J., Castet, C., Cheng, Y., Dey Choudhury, A., Coen, D., **Crewell, S.**, Dabholkar, A., Dai, Q., Doblas-Reyes, F., Durran, D., El Gaidi, A., Ewen, C., Exarchou, E., Eyring, V., Falkinhoff, F., Farrell, D., Forster, P. M., Frassoni, A., Frauen, C., Fuhrer, O., Gani, S., Gerber, E., Goldfarb, D., Grieger, J., Gruber, N., Hazeleger, W., Herken, R., Hewitt, C., Hoefler, T., Hsu, H.-H., Jacob, D., Jahn, A., Jakob, C., Jung, T., Kadow, C., Kang, I.-S., Kang, S., Kashinath, K., Kleinen-von Königslöw, K., Klocke, D., Kloenne, U., Klöwer, M., Kodama, C., Kollet, S., Kölling, T., Kontkanen, J., Kopp, S., Koran, M., Kulmala, M., Lappalainen, H., Latifi, F., Lawrence, B., Lee, J. Y., Lejeun, Q., Lessig, C., Li, C., Lippert, T., Luterbacher, J., Manninen, P., Marotzke, J., Matsouoka, S., Merchant, C., Messmer, P., Michel, G., Michielsen, K., Miyakawa, T., Müller, J., Munir, R., Narayanasetti, S., Ndiaye, O., Nobre, C., Oberg, A., Oki, R., Özkan-Haller, T., Palmer, T., Posey, S., Prein, A., Primus, O., Pritchard, M., Pullen, J., Putrasahan, D., Quaas, J., Raghavan, K., Ramaswamy, V., Rapp, M., Rauser, F., Reichstein, M., Revi, A., Saluja, S., Satoh, M., **Schemann, V.**, Schemm, S., Schnadt Poberaj, C., Schulthess, T., Senior, C., Shukla, J., Singh, M., Slingo, J., Sobel, A., Solman, S., Spitzer, J., Stier, P., Stocker, T., Strock, S., Su, H., Taalas, P., Taylor, J., Tegtmeier, S., Teutsch, G., Tompkins, A., Ulbrich, U., Vidale, P.-L., Wu, C.-M., Xu, H., Zaki, N., Zanna, L., Zhou, T., and Ziemen, F., 2024: Earth Virtualization Engines (EVE), //Earth Syst. Sci. Data//, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, 2024.
  
 ==== 2023 ==== ==== 2023 ====
publications/reviewed_a.txt · Last modified: 2024/05/24 16:16 by jvicenc1