User Tools

Site Tools


publications:reviewed

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
publications:reviewed [2021/01/22 12:02] – [2020] adrostpublications:reviewed [2022/02/01 09:36] – [2020] adrost
Line 7: Line 7:
 **Marke, T., S. Crewell**, V. Schemann, **J. H. Schween**, and M. Tuononen, 2018: Long-Term Observations and High Resolution Modeling of Mid-Latitude Nocturnal Boundary-Layer Processes Connected to Low-Level-Jets,  //J. Appl. Meteor. Climatol.//, 57, 1155–1170, https://doi.org/10.1175/JAMC-D-17-0341.1. **Marke, T., S. Crewell**, V. Schemann, **J. H. Schween**, and M. Tuononen, 2018: Long-Term Observations and High Resolution Modeling of Mid-Latitude Nocturnal Boundary-Layer Processes Connected to Low-Level-Jets,  //J. Appl. Meteor. Climatol.//, 57, 1155–1170, https://doi.org/10.1175/JAMC-D-17-0341.1.
  
-==== submitted ==== 
- 
- 
-**Böhm, C.**, **J. H. Schween**, M. Reyers, B. Maier, **U. Löhnert**, **S. Crewell**: Towards a climatology of fog frequency in the Atacama Desert via multi-spectral satellite data and machine learning techniques, //Journal of Applied Meteorology and Climatology//, re-submitted 20 December 2020 
- 
-**Crewell, C.**, **K. Ebell, P. Konjari, M. Mech, T. Nomokonova, A. Radovan, D. Strack**, A. M. Triana Gomez, S. Noel, R. Scarlat, G. Spreen, M. Maturilli, A. Rinke, I. Gorodetskaya, C. Viceto, T. August, and M. Schröder: A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means, //Atmospheric Measurement Techniques Discussions//, [[https://doi.org/10.5194/amt-2020-491]] 
- 
-**Jentzsch, K.**, A. Schulz, N. Pirk, T.Foken, **S. Crewell**, J. Boike: Strong CO2 exchange during synoptic scale events introduces large uncertainty into the Arctiv Carbon budget, Geophysical Research Letters, submitted 22 December 2020  
- 
-Karlsson, L., R. Krejci, M. Koike, **K. Ebell**, and Paul Zieger, The role of nanoparticles in Arctic cloud formation, //Atmos. Chem. Phys. Discuss.//, https://doi.org/10.5194/acp-2020-417, re-submitted 8 December 2020, in review. 
- 
-Stevens, B, **C.Acquistapace**, **S.Crewell**, **M.Jacob**, **M.Mech**, **S.Schnitt**, et al.: EUREC4A overview paper, ESSD (2020, submitted)   
- 
- 
-==== accepted ==== 
- 
- 
- 
-**Schoger, S. Y.**, D. Moisseev, A. von Lerber, **S. Crewell**, and **K. Ebell**: Snowfall rate retrieval for K- and W-band radar measurements designed in Hyytiälä, Finland, and tested at Ny-Ålesund, Svalbard, //Journal of Applied Meteorology and Climatology//, accepted 11 December 2020 
- 
- 
-==== 2021 ==== 
  
 ==== 2020 ==== ==== 2020 ====
Line 49: Line 27:
 **Ebell, K., T. Nomokonova**, M. Maturilli, and C. Ritter, 2020: Radiative effect of clouds at Ny-Ålesund, Svalbard, as inferred from ground-based remote sensing observations, //Journal of Applied Meteorology and Climatology//, 59, 3-22, [[https://doi.org/10.1175/JAMC-D-19-0080.1]] **Ebell, K., T. Nomokonova**, M. Maturilli, and C. Ritter, 2020: Radiative effect of clouds at Ny-Ålesund, Svalbard, as inferred from ground-based remote sensing observations, //Journal of Applied Meteorology and Climatology//, 59, 3-22, [[https://doi.org/10.1175/JAMC-D-19-0080.1]]
  
-**Frank, C. W., B. Pospichal**, S. Wahl, J. D. Keller, A. Hense, and **S. Crewell**, 2020a: The added value of high resolution regional reanalyses for wind power applications, //Renewable Energy//, 148, 1094-1109 [[https://doi.org/10.1016/j.renene.2019.09.138]] +**Frank, C. W., B. Pospichal**, S. Wahl, J. D. Keller, A. Hense, and **S. Crewell**, 2020: The added value of high resolution regional reanalyses for wind power applications, //Renewable Energy//, 148, 1094-1109 [[https://doi.org/10.1016/j.renene.2019.09.138]]
- +
-**Frank, C.**, S. Fiedler, **S. Crewell**, 2020b: Balancing potential of natural variability and extremes in photovoltaic and wind energy production for European countries, //Renewable Energy//, [[https://doi.org/10.1016/j.renene.2020.07.103]]+
  
 **Gierens, R.**, S. Kneifel, M. D. Shupe, **K. Ebell**, M. Maturilli, and **U. Löhnert**, 2020: Low-level mixed-phase clouds in a complex Arctic environment,// Atmospheric Chemistry and Physics//, 20, 3459–3481, [[https://doi.org/10.5194/acp-20-3459-2020]] **Gierens, R.**, S. Kneifel, M. D. Shupe, **K. Ebell**, M. Maturilli, and **U. Löhnert**, 2020: Low-level mixed-phase clouds in a complex Arctic environment,// Atmospheric Chemistry and Physics//, 20, 3459–3481, [[https://doi.org/10.5194/acp-20-3459-2020]]
Line 57: Line 33:
 **Jacob, M.**, P. Kollias, F. Ament, V. Schemann, and **S. Crewell**, 2020: Multi-layer Cloud Conditions in Trade Wind Shallow Cumulus – Confronting Models with Airborne Observations, //Geoscientific Model Development//, 13, 5757–5777, [[https://doi.org/10.5194/gmd-13-5757-2020]] **Jacob, M.**, P. Kollias, F. Ament, V. Schemann, and **S. Crewell**, 2020: Multi-layer Cloud Conditions in Trade Wind Shallow Cumulus – Confronting Models with Airborne Observations, //Geoscientific Model Development//, 13, 5757–5777, [[https://doi.org/10.5194/gmd-13-5757-2020]]
  
-Maahn, M., D. D. Turner, **U. Löhnert**, D. J. Posselt, **K. Ebell**, G. G. Mace, and J. M. Comstock, 2020: Optimal Estimation Retrievals and Their Uncertainties: What Every Atmospheric Scientist Should Know. //Bulletin of the American Meteorological Society//, [[https://doi.org/10.1175/BAMS-D-19-0027.1]]+Maahn, M., D. D. Turner, **U. Löhnert**, D. J. Posselt, **K. Ebell**, G. G. Mace, and J. M. Comstock, 2020: Optimal Estimation Retrievals and Their Uncertainties: What Every Atmospheric Scientist Should Know. //Bulletin of the American Meteorological Society//, E1512–E1523, [[https://doi.org/10.1175/BAMS-D-19-0027.1]]
  
 **Marke, T., Löhnert, U.**, Schemann, V., **Schween, J. H.**, and **S. Crewell**, 2020: Detection of land-surface-induced atmospheric water vapor patterns, //Atmospheric Chemistry and Physics//, 20, 1723–1736, [[https://doi.org/10.5194/acp-20-1723-2020]].  **Marke, T., Löhnert, U.**, Schemann, V., **Schween, J. H.**, and **S. Crewell**, 2020: Detection of land-surface-induced atmospheric water vapor patterns, //Atmospheric Chemistry and Physics//, 20, 1723–1736, [[https://doi.org/10.5194/acp-20-1723-2020]]. 
Line 63: Line 39:
 McMichael, L. A., Yang F., Marke, T., ** Löhnert. U.**, Mechem, D. B., Vogelmann, A. M., Sanchez, K., Tuononen, M., **Schween, J. H.**, 2020: Characterizing Subsiding Shells in Shallow Cumulus Using Doppler Lidar and Large‐Eddy Simulation, // Geophysical Research Letters//, 47(18), e2020GL089699, [[https://doi.org/10.1029/2020GL089699|DOI:10.1029/2020GL089699]] McMichael, L. A., Yang F., Marke, T., ** Löhnert. U.**, Mechem, D. B., Vogelmann, A. M., Sanchez, K., Tuononen, M., **Schween, J. H.**, 2020: Characterizing Subsiding Shells in Shallow Cumulus Using Doppler Lidar and Large‐Eddy Simulation, // Geophysical Research Letters//, 47(18), e2020GL089699, [[https://doi.org/10.1029/2020GL089699|DOI:10.1029/2020GL089699]]
  
-**Mech, M.**, M. Maahn, **S. Kneifel**, **D. Ori**, E. Orlandi, P. Kollias, V. Schemann, and **S. Crewell**, 2020: PAMTRA 1.0: Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere, //Geoscientific Model Development//, 13, 4229-4251, [[https://doi.org/10.5194/gmd-13-4229-2020]] +**Mech, M.**, M. Maahn, **S. Kneifel**, **D. Ori**, E. Orlandi, P. Kollias, V. Schemann, and **S. Crewell**, 2020: PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere, //Geoscientific Model Development//, 13, 4229-4251, [[https://doi.org/10.5194/gmd-13-4229-2020]] 
  
 Neher, I., **S. Crewell**, S. Meilinger, U. Pfeifroth, and J. Trentmann, 2020: Long-term variability of solar irradiance and its complications for photovoltaic power in West Africa, //Atmospheric Chemistry and Physics//, 20, 12871-12888, [[https://doi.org/10.5194/acp-20-12871-2020]] Neher, I., **S. Crewell**, S. Meilinger, U. Pfeifroth, and J. Trentmann, 2020: Long-term variability of solar irradiance and its complications for photovoltaic power in West Africa, //Atmospheric Chemistry and Physics//, 20, 12871-12888, [[https://doi.org/10.5194/acp-20-12871-2020]]
Line 69: Line 45:
 **Nomokonova, T., K. Ebell, U. Löhnert**, M. Maturilli, and C. Ritter, 2020: The influence of water vapor anomalies on clouds and their radiative effect at Ny-Ålesund, // Atmospheric Chemistry and Physics//, 20, 5157–5173, [[https://doi.org/10.5194/acp-20-5157-2020]] **Nomokonova, T., K. Ebell, U. Löhnert**, M. Maturilli, and C. Ritter, 2020: The influence of water vapor anomalies on clouds and their radiative effect at Ny-Ålesund, // Atmospheric Chemistry and Physics//, 20, 5157–5173, [[https://doi.org/10.5194/acp-20-5157-2020]]
  
-Reyers, M., **C. Böhm**,  L. Knarr Y. Shao, and **S. Crewell**,2020: Synoptic-to-regional scale analysis of rainfall in the Atacama Desert (18°S-26°S) using a long-term simulation with WRF, //Monthly Weather Review//, 148 (8), 1-51, [[https://doi.org/10.1175/MWR-D-20-0038.1]]+Reyers, M., **C. Böhm**,  L. Knarr Y. Shao, and **S. Crewell**,2020 (online): Synoptic-to-regional scale analysis of rainfall in the Atacama Desert (18°S-26°S) using a long-term simulation with WRF, //Monthly Weather Review//, 148 (8), 1-51, [[https://doi.org/10.1175/MWR-D-20-0038.1]]
  
 Rostosky, P., G. Spreen, S. Gerland, M. Huntemann, and **M. Mech**, 2020: Modeling the microwave emission of snow on Arctic sea ice for estimating the uncertainty of satellite retrievals, //Journal of Geophysical Research Oceans//, 125 (3), [[https://doi.org/10.1029/2019JC015465]] Rostosky, P., G. Spreen, S. Gerland, M. Huntemann, and **M. Mech**, 2020: Modeling the microwave emission of snow on Arctic sea ice for estimating the uncertainty of satellite retrievals, //Journal of Geophysical Research Oceans//, 125 (3), [[https://doi.org/10.1029/2019JC015465]]
Line 82: Line 58:
  
 **Schween, J. H.**, D. Hoffmeister, and **U. Löhnert**, 2020: Filling the Observational Gap in the Atacama Desert with a new Network of Climate Stations, //Global and Planetary Change//, 184, [[https://doi.org/10.1016/j.gloplacha.2019.103034]] **Schween, J. H.**, D. Hoffmeister, and **U. Löhnert**, 2020: Filling the Observational Gap in the Atacama Desert with a new Network of Climate Stations, //Global and Planetary Change//, 184, [[https://doi.org/10.1016/j.gloplacha.2019.103034]]
 +
 +Stephan, C.C., **Schnitt, S.**, Schulz, H., Bellenger, H., de Szoeke, S. et al, 2020: Ship- and island-based atmospheric soundings from the 2020 EUREC4A field campaign, //Earth System Science Data//, 13, 491–514, [[https://doi.org/10.5194/essd-13-491-2021]]
  
 Stevens, B., **C. Acquistapace**, **M. Costa-Surós**, **S. Crewell**, **M. Jacob**, **U. Löhnert**, **S. Schnitt**, et al., 2020: Large-eddy and Storm Resolving Models for Climate Prediction - The Added Value for Clouds and Precipitation, //Journal of the Meteorological Society of Japan//, 98(2), 395-435, [[https://doi.org/10.2151/jmsj.2020-021]] Stevens, B., **C. Acquistapace**, **M. Costa-Surós**, **S. Crewell**, **M. Jacob**, **U. Löhnert**, **S. Schnitt**, et al., 2020: Large-eddy and Storm Resolving Models for Climate Prediction - The Added Value for Clouds and Precipitation, //Journal of the Meteorological Society of Japan//, 98(2), 395-435, [[https://doi.org/10.2151/jmsj.2020-021]]
publications/reviewed.txt · Last modified: 2022/12/11 21:31 by uli