===== References on MWR===== ==== Overview Articles and Books ==== Bohren C. F. and D.R. Huffman, 198s: Absorption and Scattering of Light by Small Particles, New York, //John Wiley//. Bohren, C. F. and E. Clothiaux, 2006: Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems, Physics Textbook, Wiley-VCH, 472 pp. Goody R. M. and Y. L. Yung, 1995: Atmospheric Radiation, Theoretical Basis, //Oxford University Press//, Second Edition, 544 pp. Hewison T., 2006: Profiling Temperature and Humidity by Ground-based Microwave Radiometers, PhD Thesis, Department of Meteorology, University of Reading. [[http://www.met.rdg.ac.uk/phdtheses/Profiling%20Temperature%20and%20Humidity%20by%20Ground-based%20Microwave%20Radiometers.pdf|pdf]] Janssen M. A., 1993: An Introduction to the Passive Remote Sensing of Atmospheres,” in Michael A. Janssen (ed.), Atmospheric Remote Sensing by Microwave Radiometry, New York, J. Wiley & Sons, Inc, pp.1-36. Mätzler, C., 2006: Thermal Microwave Radiation: Applications for Remote Sensing, Thermal Microwave Radiation: Applications for Remote Sensing, ed.: C. Mätzler, no.: 52, series: IEE Electromagnetic Wave series, The Institution of Engineering and Technology (IET), ISBN 0-86341-573-3 / 978-086341-573-9 Petty, G. W.: A First Course In Atmospheric Radiation (2nd Ed.), Sundog Publishing, Madison, Wisconsin, 460 pp, ISBN-10: 0-9729033-1-3. Westwater, E. R., S. Crewell, C. Mätzler, 2004: A Review of Surface-Based Microwave and Millimeter Wave Radiometric Remote Sensing of the Troposphere, //URSI Radio Science Bulletin//, no.: 310, pp.: 59-80. Westwater, E. R., S. Crewell, C. Mätzler, D. Cimini, 2005: Principles of surface-based microwave and millimeter wave radiometric remote sensing of the troposphere, Quaderni della Società Italiana di Elettromagnetismo, vol.: 1, no.: 3, pp.: 50-90. Westwater, E. R., 1993: Ground-based Microwave Remote Sensing of Meteorological Variables. – In: Janssen, M. (Ed.): Atmospheric Remote Sensing by Microwave Radiometry, Wiley & Sons, Inc., 145–213. ==== Instruments and Calibration ==== Battaglia, A., P. Saavedra, C. Simmer, and T. Rose, 2009: Rain observations by a multi-frequency dual-polarized radiometer, //IEEE Geosci. Remote Sens. Lett.//, 6, 354-358. [[http://www2.meteo.uni-bonn.de/forschung/gruppen/admirari|ADMIRARI]] Crewell, S., H. Czekala, U. Löhnert, C. Simmer, T. Rose, R. Zimmermann, and R. Zimmermann, 2001: Microwave radiometer for cloud carthography: A 22-channel ground-based microwave radiometer for atmospheric research, //Radio Sci.//, vol. 36, no. 4, pp. 621–638. Han Y. and E. R.Westwater, 2000: Analysis and improvement of tipping calibration for ground-based microwave radiometers, //IEEE Trans. Geosci. Remote Sensing//, vol. 38, pp. 1260–1276. Martin L., M. Schneebeli, and C. Mätzler, 2006: ASMUWARA, a ground-based radiometer system for tropospheric monitoring, //Meteorol. Z.//, vol. 15, No. 1, 11-17, DOI: 10.1127/0941-2948/2006/0092. [[http://www.schweizerbart.de/resources/downloads/paper_previews/54873.pdf|pdf]] Solheim, F., J. Godwin and R. Ware, 1998: Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid water profiles by a frequency synthesized microwave radiometer, //Meteorol. Z.//, Vol. 7, 370-376. ==== Gas Absorption and Water Permittivity ==== Cadeddu M. P., V. H. Payne, S. A. Clough, K. Cady-Pereira, and James C. Liljegren, 2007: Effect of the Oxygen Line-Parameter Modeling on Temperature and Humidity Retrievals From Ground-Based Microwave Radiometers, //IEEE Trans. Geosci. Rem. Sens.//, vol. 45, no. 7, pp. 2216-2223. Cadeddu, M.P. and D.D. Turner, 2011: Evaluation of water permittivity models from ground-based observations of cold clouds at frequencies between 23 and 170 GHz, //IEEE Trans. Geosci. Rem. Sens.//, in press, doi:10.1109/TGRS.2011.2121074. Clough S. A., M.W. Shephard, E. J.Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes, //J. Quant. Spectrosc. Radiat. Transf//., vol. 91, no. 2, pp. 233–244. Debye P., Polar Molecules, New York, Dover, 1929. Grant E. H., J. Buchanan, and H. F. Cook, 1957: Dielectric Behavior of Water at Microwave Frequencies,” //Journal of Chemical Physics//, 26, pp. 156-161. Ellison, W., 2007: Permittivity of pure water at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100°C, //J. Phys. Chem. Data//, 36(1), 1–17. Hewison T., D. Cimini, L. Martin, C. Gaffard, and J. Nash: "Validating clear air absorption models using ground-based microwave radiometers and vice-versa", TUC special issue, Meteorologische Zeitschrift, Liljegren J. C., S. A. Boukabara, K. Cady-Pereira, and S. A. Clough, 2005: The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a twelve-channel microwave radiometer, //IEEE Trans. Geosci. Rem. Sens.//, vol. 43, no. 5, pp. 1102–1108. Liebe H. J. and D. H. Layton, 1987: Millimeter Wave Properties of the Atmosphere: Laboratory Studies and Propagation Modeling,” National Telecommunications and Information Administration (NTIA) Report 87-24, 74 pp. (available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA, 22161). Liebe H. J., G. A. Hufford, and T. Manabe, 1991: A Model for the Complex Permittivity of Water at Frequencies below 1 THz, //International Journal of Infrared and Millimeter Waves//, 12(7), pp. 659-675. Liebe H. J., G. A. Hufford, and M. G. Cotton, 1993: Propagation Modeling of Moist Air and Suspended Water/Ice Particles at Frequencies below 1000, in AGARD Conference Proceedings 542, Atmospheric propagation effects through natural and man-made obscurants for visible through MM-wave radiation, pp. 3.1 to 3.10 (available from NASA Center for Aerospace Information, Linthicum Heights, MD). Mätzler, C., P. Rosenkranz, and J. Cermak, 2010: Microwave absorption of supercooled clouds and implications for the dielectric properties of water, J. Geophys. Res., 115, D23208, doi:10.1029/2010JD014283. Payne V. H., J. S. Delamere, K. E. Cady-Pereira, R. R. Gamache, J.-L.Moncet, E. J. Mlawer, and S. A. Clough, 2008: Air-broadened half-widths of the 22 GHz and 183 GHz water vapor lines, //IEEE Trans. Geosci. Rem. Sens.//, vol. 46, no. 11, pp. 3601–3617. Payne, V.H., E.J. Mlawer, K.E. Cady-Pereira, and J.-L. Moncet, 2011: Water vapor continuum absorption in the microwave, //IEEE Trans. Geosci. Rem. Sens.//, 49, 2194-2208, doi:10.1109/TGRS.2010.2091416. Rosenkranz P. W., 1993: Absorption Of Microwaves By Atmospheric Gases, Chapter 2 in Michael A. Janssen (ed.), Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, Ed., New York, J. Wiley & Sons, Inc., 1993, pp. 37-90. Rosenkranz P. W., 1998: Water vapor microwave continuum absorption: A comparison of measurements and models, //Radio Science//, 33, 4, pp. 919-928. Rosenkranz P. W., 1999: Correction to "Water vapor microwave continuum absorption: A comparison of measurements and models", //Radio Science//, 34, 4, pp. 1025. Stogryn, A. P., H. T. Bull, K. Rubayi, and S. Iravanchy, 1995: The microwave permittivity of sea and fresh water, //Aerojet Internal Rep.//, Aerojet, Sacramento, Calif. Turner D. D., M. P. Cadeddu, U. Löhnert, S. Crewell, and A. M. Vogelmann, 2009: Modifications to the Water Vapor Continuum in the Microwave Suggested by Ground-Based 150-GHz Observations, //IEEE Trans. Geosci. Rem. Sens.//, vol. 47, no. 10, pp. 3326-3337. ==== Retrieval and Information Content ==== Churnside J. H., J. H., T. A. Stermitz, and J. A. Schroeder, 1994: Temperature Profiling with Neural Network Inversion of Microwave Radiometer Data, //J. Atmos. Oceanic Technol.//, 11, pp.105-109 Crewell S., K. Ebell, U. Loehnert, and D. D. Turner, 2009: Can liquid water profiles be retrieved from passive microwave zenith observations?, //Geophys. Res. Lett//., V. 36, L06803, doi:10.1029/2008GL036934 Crewell, S., and U. Löhnert, 2003: Accuraccy of cloud liquid water path from ground-based microwave radiometry. Part II. Sensor accuracy and synergy, //Radio Science//, Vol. 38, 3, 8042, doi:10.1029/2002RS002634 Hewison T., 2007: 1D-VAR retrievals of temperature and humidity profiles from a ground-based microwave radiometer, //IEEE Trans. Geosci. Rem. Sens.//, Vol. 45, No. 7, pp. 2163-2168. Huang, D., Y. Liu, and W. Wiscombe, 2008: Cloud tomography: Role of constraints and a new algorithm, //J. Geophys. Res.//, 113, D23203, doi:10.1029/2008JD009952. Löhnert, U., and S. Crewell, 2003: Accuraccy of cloud liquid water path from ground-based microwave radiometry. Part I. Dependency on Cloud model statistics, //Radio Science//, Vol. 38, 3, 8041, doi:10.1029/2002RS002654. Mätzler, C., and J. Morland, 2009: Refined physical retrieval of integrated water vapor and cloud liquid for microwave radiometer data, //IEEE Trans. Geosci. Remote Sens//., 47(6), 1585–1594. Padmanabhan, S., S. C., Reising, J. Vivekanandan, F.Iturbide-Sanchez, 2009: Retrieval of Atmospheric Water Vapor Density With Fine Spatial Resolution Using Three-Dimensional Tomographic Inversion of Microwave Brightness Temperatures Measured by a Network of Scanning Compact Radiometers, //IEEE Trans. Geosci. Rem. Sens.//, vol. 47, no. 11, 3708 – 3721. Solheim, F., J. Godwin, E. Westwater, Y. Han, S. Keihm, K. Marsh and R. Ware, 1998: Radiometric profiling of temperature, water vapor, and cloud liquid water using various inversion methods, //Rad. Sci.//, 33, 393-404. Turner, D.D., S.A. Clough, J.C. Liljegren, E.E. Clothiaux, K. Cady-Pereira, and K.L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from Atmospheric Radiation Measurement (ARM) microwave radiometers. //IEEE Trans. Geosci. Remote Sens.//, 45, 3680-3690, doi:10.1109/TGRS.2007.903703. ==== Validation ==== Cimini D., E. Campos, R. Ware, S. Albers, G. Giuliani, J. Oreamuno, P. Joe, S. Koch, S. Cober, and E. Westwater, 2011: Thermodynamic Atmospheric Profiling during the 2010 Winter Olympics Using Ground-based Microwave Radiometry, //IEEE Trans. Geosci. Rem. Sens.//, accepted. Cimini D., E. R. Westwater, and A. J. Gasiewski, 2010: Temperature and humidity profiling in the Arctic using millimeter-wave radiometry and 1DVAR, //IEEE Trans. Geosci. Rem. Sens.//, Vol. 48, 3, 1381-1388, 10.1109/TGRS.2009.2030500. Cimini, D., T. J. Hewison, L. Martin, J. Güldner, C. Gaffard and F. S. Marzano, 2006: Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC, //Met. Zeitschrift//, Vol. 15, No. 1, 45-56. Crewell, S., and U. Löhnert, 2007: Accuracy of boundary layer temperature profiles retrieved with multi-frequency, multi-angle microwave radiometry, //IEEE Trans. Geosci. Rem. Sens.//, Vol. 45, 3, 2195-2201, DOI10.1109/TGRS.2006.888434. Güldner J. and D. Spänkuch, 2001: Remote Sensing of the Thermodynamic State of the Atmospheric Boundary Layer by Ground-Based Microwave Radiometry, //J. Atmos. Oceanic Technol.//, 18, pp. 925-933. Kadygrov, E. N. and D. R. Pick, 1998: The potential performance of an angular scanning single channel microwave radiometer and some comparisons with in situ observations, //Meteorol. Appl.//, vol. 5, pp. 393–404. Löhnert U., E. van Meijgaard, H. K. Baltink, S. Groß, and R. Boers, 2007: Accuracy assessment of an integrated profiling technique for operationally deriving profiles of temperature, humidity and cloud liquid water, //J. Geophys. Res.//, vol. 112, no. D4, p. D04 205. Mattioli V., E. R. Westwater, S. I. Gutman, and V. R. Morris, 2005: Forward Model Studies of Water Vapor using Scanning Microwave Radiometers, Global Positioning System, and Radiosondes during the Cloudiness Inter-Comparison Experiment, //IEEE Trans. Geosci. Rem. Sens.//,. 43(5), pp. 1012-1021. Westwater, E. R., Y. Han, V. G. Irisov, V. Leuskiy, E. N. Kadygrov, and S. A. Viazankin, 1999: Remote sensing of boundary-layer temperature profiles by a scanning 5-mm microwave radiometer and RASS: Comparison experiment, //J. Atmos. Ocean. Technol.//, vol. 16, no. 7, pp. 805–818. ==== Process Studies ==== Czekala, H., S. Crewell, C. Simmer, A. Thiele, A. Hornbostel and A. Schroth, 2001: Interpretation of polarization features in ground-based microwave observations as caused by horizontally aligned oblate spheroids, //J. Appl. Meteorology//, vol. 40, pp. 1918-1932. Kneifel, S., U. Löhnert, A. Battaglia, S. Crewell, and D. Siebler, 2010: Snow scattering signals in ground-based passive microwave radiometer measurements, //J. Geophys. Res//., 115, D16214, doi:10.1029/2010JD013856 Kneifel, S., S. Crewell, U. Löhnert and J. Schween, 2009: Investigating water vapor variability by groundbased microwave radiometry: Evaluation using airborne observations, //IEEE Trans. Geosci. Rem. Sens.//, 6(1), 157-161, DOI.10.1109/LGRS.2008.2007659. Marzano F.S., D. Cimini, and M. Montopoli, 2010: Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data, //Atmospheric Research//, doi:10.1016/j.atmosres.2010.03.019. Schween, J.H., S. Crewell, and U. Löhnert, 2011: Horizontal-humidity gradient from one single-scanning microwave Rradiometer, //IEEE Geosci. Remote Sens. Lett.// 8(2), 336-340. ==== Synergy with other Instruments ==== Ebell, K., U. Löhnert, S. Crewell, D. Turner, 2010: On characterizing the error in a remotely sensed liquid water content profile, //Atmospheric Research//, 98(1), 57-68. DOI:10.1016/j.atmosres.2010.06.002. Han Y. and E. R. Westwater, 1997: Applications of Kalman Filtering to Derive Water Vapor from Raman Lidar and Microwave Radiometers, //J. Atmos. Oceanic Technol.//, 14, Part 1, June, 481-487. Löhnert U., D. Turner, and S. Crewell, 2009: Ground-Based Temperature and Humidity Profiling Using Spectral Infrared and Microwave Observations. Part I: Simulated Retrieval Performance in Clear-Sky Conditions, //J. Appl. Meteorol. Clim//., 48(5):1017-1032 Löhnert, U., S. Crewell, O. Krasnov, E. O’Connor, H. Russchenberg, 2008: Advances in continuously profiling the thermodynamic state of the boundary layer: Integration of measurements and methods. //J. Atmos. Oceanic Technol.//, 25, 1251–1266. Löhnert U., S. Crewell, and C. Simmer, 2004: An integrated approach toward retrieving physically consistent profiles of temperature, humidity, and cloud liquid water, //J. Appl. Meteorol//., vol. 43, no. 9, pp. 1295–1307.