User Tools

Site Tools


publications:reviewed_a

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
publications:reviewed_a [2025/09/25 08:25] susannepublications:reviewed_a [2025/11/21 08:19] (current) susanne
Line 8: Line 8:
  
 ==== submitted ====  ==== submitted ==== 
 +
 +May, S. M., D. Hoffmeister, D. Brill, D. Wolf, S. Opitz, **C. Böhm**, M. Zickel, O. Bubenzer: Terracettes in the hyperarid Atacama Desert – fog as a key driver of stepped hillslope evolution?, //Catena//, submitted 02 October 2025
  
 Moser, M., C. Voigt, O. Eppers, J. Lucke, E. De La Torre Castro, J. Mayer, R. Dupuy, G. Mioche, O. Jourdan, H.-C. Clemen, J. Schneider, P. Joppe, S. Mertes, B. Wetzel, S. Borrmann, M. Klingebiel, **M. Mech**, C. Lüpkes, **S. Crewell**, A. Ehrlich, A. Herber, and M. Wendisch: The Arctic Low-Level Mixed-Phase Haze Regime and its Microphysical Differences to Mixed-Phase Clouds, //Atmos. Chem. Phys.// [[https://egusphere.copernicus.org/preprints/2025/egusphere-2025-3876/]] Moser, M., C. Voigt, O. Eppers, J. Lucke, E. De La Torre Castro, J. Mayer, R. Dupuy, G. Mioche, O. Jourdan, H.-C. Clemen, J. Schneider, P. Joppe, S. Mertes, B. Wetzel, S. Borrmann, M. Klingebiel, **M. Mech**, C. Lüpkes, **S. Crewell**, A. Ehrlich, A. Herber, and M. Wendisch: The Arctic Low-Level Mixed-Phase Haze Regime and its Microphysical Differences to Mixed-Phase Clouds, //Atmos. Chem. Phys.// [[https://egusphere.copernicus.org/preprints/2025/egusphere-2025-3876/]]
Line 13: Line 15:
 **Risse, N.**, **M. Mech**, C. Prigent, J. Müller, **S. Crewell**: Cloud water path detectability and retrieval accuracy from airborne passive microwave observations over Arctic sea ice, //Atmospheric Measurement Techniques Discussions//, [[https://egusphere.copernicus.org/preprints/2025/egusphere-2025-3311/]], submitted 09 July 2025. **Risse, N.**, **M. Mech**, C. Prigent, J. Müller, **S. Crewell**: Cloud water path detectability and retrieval accuracy from airborne passive microwave observations over Arctic sea ice, //Atmospheric Measurement Techniques Discussions//, [[https://egusphere.copernicus.org/preprints/2025/egusphere-2025-3311/]], submitted 09 July 2025.
  
-**Chatterjee, D., N. Raabe, S. Crewell**: Listening to the Murmurs of Embeddings: Uncovering Low-Level Cloud Processes’ Impact on Solar Energy Applications, //Energy and AI//, submitted 10 June 2025.+**Chatterjee, D., N. Raabe, S. Crewell**: Listening to the Murmurs of Embeddings: Uncovering Low-Level Cloud Processes’ Impact on Solar Energy Applications, //Machine Learning: Earth//, submitted 20 November 2025.
  
 **Schulte, L.**, R. Forbes, L. Magnusson, V. Schemann, J. Day, **S. Crewell**: Towards improving Arctic mixed-phase cloud representation in the ECMWF model using **Schulte, L.**, R. Forbes, L. Magnusson, V. Schemann, J. Day, **S. Crewell**: Towards improving Arctic mixed-phase cloud representation in the ECMWF model using
Line 19: Line 21:
  
 **Walbröl, A., S. Crewell**, C. Barrientos-Velasco, G. Chellini, H.J. Griesche, J.E. Rückert, **K. Ebell**, Moisture inversions in the central Arctic: Product  **Walbröl, A., S. Crewell**, C. Barrientos-Velasco, G. Chellini, H.J. Griesche, J.E. Rückert, **K. Ebell**, Moisture inversions in the central Arctic: Product 
-assessment and longwave radiative effect, //Quarterly Journal of the Royal Meteorological Society//, submitted 7 July 2025.+assessment and longwave radiative effect, //Quarterly Journal of the Royal Meteorological Society//, submitted 5 September 2025. 
  
-Wendisch, M., B. Kirbus, D. Ori, M.D. Shupe, **S. Crewell**, H. Sodemann, and V. Schemann: Observed and modeled Arctic airmass transformations during warm air intrusions and cold air outbreaks,  //EGUsphere [preprint]//, https://egusphere.copernicus.org/preprints/2025/egusphere-2025-2062/ 
  
 Zeppenfeld, S., J. Schäfer, C. Pilz, **K. Ebell**, M. Zeising, F. Stratmann, H. Siebert, B. Wehner, M. Wietz, A. Bracher, M. van Pinxteren: Marine Carbohydrates and Other Sea Spray Aerosol Constituents Across Altitudes in the Lower Troposphere of Ny-Ålesund, Svalbard, //npj Climate and Atmospheric Science//, submitted on 22 Apr 2025 Zeppenfeld, S., J. Schäfer, C. Pilz, **K. Ebell**, M. Zeising, F. Stratmann, H. Siebert, B. Wehner, M. Wietz, A. Bracher, M. van Pinxteren: Marine Carbohydrates and Other Sea Spray Aerosol Constituents Across Altitudes in the Lower Troposphere of Ny-Ålesund, Svalbard, //npj Climate and Atmospheric Science//, submitted on 22 Apr 2025
  
 ==== accepted ====  ==== accepted ==== 
-Petzold, A., N. F. Khan, Y. Li, P. Spichtinger, S. Rohs, **S. Crewell**, A. Wahner, M. Krämer: Contrails inside cirrus clouds predominate with uncertain climate impact, in review in //Nature Communications//, preview available at https://www.researchsquare.com/article/rs-6837438/v1  
  
 ==== 2025 ==== ==== 2025 ====
Line 39: Line 40:
  
 Ji, D., M. Palm, M. Buschmann, **K. Ebell**, M. Maturilli, X. Sun, J. Notholt, 2025: Hygroscopic aerosols amplify longwave downward radiation in the Arctic, Atmos. Chem. Phys., 25, 3889–3904, [[https://doi.org/10.5194/acp-25-3889-2025]].  Ji, D., M. Palm, M. Buschmann, **K. Ebell**, M. Maturilli, X. Sun, J. Notholt, 2025: Hygroscopic aerosols amplify longwave downward radiation in the Arctic, Atmos. Chem. Phys., 25, 3889–3904, [[https://doi.org/10.5194/acp-25-3889-2025]]. 
 +
 +Petzold, A., N. F. Khan, Y. Li, P. Spichtinger, S. Rohs, **S. Crewell**, A. Wahner, M. Krämer, 2025: Contrails inside cirrus clouds predominate with uncertain climate impact, in review in //Nature Communications//, 16, 9695, https://www.nature.com/articles/s41467-025-65532-2
  
 Pfitzenmaier, L., P. Kollias, **N. Risse**, **I. Schirmacher**, B. Puigdomenech Treserras, and K. Lamer, 2025: Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data, //Geoscientific Model Development//, Geosci. Model Dev., 18, 101–115, [[https://doi.org/10.5194/gmd-18-101-2025]]. Pfitzenmaier, L., P. Kollias, **N. Risse**, **I. Schirmacher**, B. Puigdomenech Treserras, and K. Lamer, 2025: Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data, //Geoscientific Model Development//, Geosci. Model Dev., 18, 101–115, [[https://doi.org/10.5194/gmd-18-101-2025]].
Line 45: Line 48:
  
 Seidel, C., D. Althausen, A. Ansmann, M. Wendisch, H. Griesche, M. Radenz, J. Hofer, S. Dahlke, M. Maturilli, **A. Walbröl**, H. Baars, and R. Engelmann, 2025: Close Correlation Between Vertically Integrated Tropospheric Water Vapor and the Downward, Broadband Thermal‐Infrared Irradiance at the Ground: Observations in the Central Arctic During MOSAiC, //JGR Atmospheres//, 130, e2024JD042378, [[https://doi.org/10.1029/2024JD042378]]. Seidel, C., D. Althausen, A. Ansmann, M. Wendisch, H. Griesche, M. Radenz, J. Hofer, S. Dahlke, M. Maturilli, **A. Walbröl**, H. Baars, and R. Engelmann, 2025: Close Correlation Between Vertically Integrated Tropospheric Water Vapor and the Downward, Broadband Thermal‐Infrared Irradiance at the Ground: Observations in the Central Arctic During MOSAiC, //JGR Atmospheres//, 130, e2024JD042378, [[https://doi.org/10.1029/2024JD042378]].
 +
 +Wendisch, M., B. Kirbus, D. Ori, M.D. Shupe, **S. Crewell**, H. Sodemann, and V. Schemann. 2025: Observed and modeled Arctic airmass transformations during warm air intrusions and cold air outbreaks, //Atmos. Chem. Phys.//, 25, 15047–15076, [[https://doi.org/10.5194/acp-25-15047-2025]]
  
 ==== 2024 ==== ==== 2024 ====
Line 58: Line 63:
 Kirbus, B., **I. Schirmacher**, M. Klingebiel, M. Schäfer, A. Ehrlich, N. Slättberg, J. Lucke, M. Moser, H. Müller, and M. Wendisch, 2024: Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)3: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses. //Atmos. Chem. Phys.//,24, 3883–3904, [[https://doi.org/10.5194/acp-24-3883-2024]]. Kirbus, B., **I. Schirmacher**, M. Klingebiel, M. Schäfer, A. Ehrlich, N. Slättberg, J. Lucke, M. Moser, H. Müller, and M. Wendisch, 2024: Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)3: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses. //Atmos. Chem. Phys.//,24, 3883–3904, [[https://doi.org/10.5194/acp-24-3883-2024]].
  
-Kiszler, T., **D.Ori**, and **V. Schemann**, 2024: Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds //Atmos. Chem. Phys.// 24, 10039-10053 [[https://doi.org/10.5194/acp-24-10039-2024]].+Kiszler, T., **D.Ori**, and **V. Schemann**, 2024: Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds//Atmos. Chem. Phys.// 24, 10039-10053 [[https://doi.org/10.5194/acp-24-10039-2024]].
  
 Maherndl, N., M. Moser, J. Lucke, **M. Mech**, **N. Risse**, **I. Schirmacher**, and M. Maahn, 2024: Quantifying riming from airborne data during the HALO-(AC)3 campaign, //Atmos. Meas. Tech.//, 17, 1475–1495, [[https://doi.org/10.5194/amt-17-1475-2024]]. Maherndl, N., M. Moser, J. Lucke, **M. Mech**, **N. Risse**, **I. Schirmacher**, and M. Maahn, 2024: Quantifying riming from airborne data during the HALO-(AC)3 campaign, //Atmos. Meas. Tech.//, 17, 1475–1495, [[https://doi.org/10.5194/amt-17-1475-2024]].
publications/reviewed_a.1758788732.txt.gz · Last modified: by susanne