User Tools

Site Tools


publications:reviewed_a

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
publications:reviewed_a [2025/08/08 15:00] susannepublications:reviewed_a [2025/11/21 08:19] (current) susanne
Line 9: Line 9:
 ==== submitted ====  ==== submitted ==== 
  
-Moser, M., CVoigtOEppersJLucke, E. De La Torre Castro, J. Mayer, R. Dupuy, G. Mioche, O. Jourdan, H.-C. Clemen, J. Schneider, P. Joppe, S. Mertes, B. Wetzel, S. Borrmann, M. Klingebiel, **M. Mech**, C. Lüpkes, **S. Crewell**, AEhrlichAHerber, and M. WendischThe Arctic Low-Level Mixed-Phase Haze Regime and its Microphysical Differences to Mixed-Phase Clouds, //Atmos. Chem. Phys.// submitted 8 August 2025+MayS. M., DHoffmeisterDBrillDWolf, S. Opitz, **C. Böhm**, MZickelOBubenzerTerracettes in the hyperarid Atacama Desert – fog as a key driver of stepped hillslope evolution?, //Catena//submitted 02 October 2025
  
-**RisseN.**, **M. Mech**, C. Prigent, J. Müller, **S. Crewell**: Cloud water path detectability and retrieval accuracy from airborne passive microwave observations over Arctic sea ice, //Atmospheric Measurement Techniques//, submitted 09 July 2025.+MoserM., C. Voigt, O. Eppers, J. Lucke, E. De La Torre Castro, J. Mayer, R. Dupuy, G. Mioche, O. Jourdan, H.-C. Clemen, J. Schneider, P. Joppe, S. Mertes, B. Wetzel, S. Borrmann, M. Klingebiel, **M. Mech**, C. Lüpkes, **S. Crewell**, A. Ehrlich, A. Herber, and M. Wendisch: The Arctic Low-Level Mixed-Phase Haze Regime and its Microphysical Differences to Mixed-Phase Clouds, //Atmos. Chem. Phys.// [[https://egusphere.copernicus.org/preprints/2025/egusphere-2025-3876/]]
  
-**ChatterjeeD., NRaabe, S. Crewell**: Listening to the Murmurs of Embeddings: Uncovering Low-Level Cloud Processes’ Impact on Solar Energy Applications, //Energy and AI//, submitted 10 June 2025.+**RisseN.****MMech**C. Prigent, J. Müller, **S. Crewell**: Cloud water path detectability and retrieval accuracy from airborne passive microwave observations over Arctic sea ice, //Atmospheric Measurement Techniques Discussions//, [[https://egusphere.copernicus.org/preprints/2025/egusphere-2025-3311/]], submitted 09 July 2025.
  
-**LauerM.**ARinke**S. Crewell**: What are the most important contributors to Arctic precipitation when, where, and how?, //Atmospheric Science Letter//, submitted 24 February 2025, revised version submitted 1 August 2025. +**ChatterjeeD., NRaabe, S. Crewell**: Listening to the Murmurs of Embeddings: Uncovering Low-Level Cloud Processes’ Impact on Solar Energy Applications, //Machine Learning: Earth//, submitted 20 November 2025.
- +
-Petzold, A., N. F. Khan, Y. Li, P. Spichtinger, S. Rohs, **S. Crewell**, A. Wahner, M. Krämer: Contrails inside cirrus clouds predominate with uncertain climate impact, in review in //Nature Communications//, preview available at https://www.researchsquare.com/article/rs-6837438/v1 +
  
 **Schulte, L.**, R. Forbes, L. Magnusson, V. Schemann, J. Day, **S. Crewell**: Towards improving Arctic mixed-phase cloud representation in the ECMWF model using **Schulte, L.**, R. Forbes, L. Magnusson, V. Schemann, J. Day, **S. Crewell**: Towards improving Arctic mixed-phase cloud representation in the ECMWF model using
Line 23: Line 21:
  
 **Walbröl, A., S. Crewell**, C. Barrientos-Velasco, G. Chellini, H.J. Griesche, J.E. Rückert, **K. Ebell**, Moisture inversions in the central Arctic: Product  **Walbröl, A., S. Crewell**, C. Barrientos-Velasco, G. Chellini, H.J. Griesche, J.E. Rückert, **K. Ebell**, Moisture inversions in the central Arctic: Product 
-assessment and longwave radiative effect, //Quarterly Journal of the Royal Meteorological Society//, submitted 7 July 2025.+assessment and longwave radiative effect, //Quarterly Journal of the Royal Meteorological Society//, submitted 5 September 2025. 
  
-Wendisch, M., B. Kirbus, D. Ori, M.D. Shupe, **S. Crewell**, H. Sodemann, and V. Schemann: Observed and modeled Arctic airmass transformations during warm air intrusions and cold air outbreaks,  //EGUsphere [preprint]//, https://egusphere.copernicus.org/preprints/2025/egusphere-2025-2062/ 
  
 Zeppenfeld, S., J. Schäfer, C. Pilz, **K. Ebell**, M. Zeising, F. Stratmann, H. Siebert, B. Wehner, M. Wietz, A. Bracher, M. van Pinxteren: Marine Carbohydrates and Other Sea Spray Aerosol Constituents Across Altitudes in the Lower Troposphere of Ny-Ålesund, Svalbard, //npj Climate and Atmospheric Science//, submitted on 22 Apr 2025 Zeppenfeld, S., J. Schäfer, C. Pilz, **K. Ebell**, M. Zeising, F. Stratmann, H. Siebert, B. Wehner, M. Wietz, A. Bracher, M. van Pinxteren: Marine Carbohydrates and Other Sea Spray Aerosol Constituents Across Altitudes in the Lower Troposphere of Ny-Ålesund, Svalbard, //npj Climate and Atmospheric Science//, submitted on 22 Apr 2025
  
 +==== accepted ==== 
  
 ==== 2025 ==== ==== 2025 ====
Line 37: Line 36:
  
 Ehrlich, A., **S. Crewell**, A. Herber, M. Klingebiel, C. Lüpkes, **M. Mech**, S. Becker, S. Borrmann, H. Bozem, M. Buschmann, H.-C. Clemen, E. De La Torre Castro, H. Dorff, R. Dupuy, O. Eppers, F. Ewald, G. George, A. Giez, S. Grawe, C. Gourbeyre, J. Hartmann, E. Jäkel, P. Joppe, O. Jourdan, Z. Jurányi, B. Kirbus, J. Lucke, A.E. Luebke, M. Maahn, N. Maherndl, C. Mallaun, J. Mayer, S. Mertes, G. Mioche, M. Moser, H. Müller, V. Pörtge, **N. Risse**, G. Roberts, S. Rosenburg, J. Röttenbacher, M. Schäfer, J. Schaefer, A. Schäfler, **I. Schirmacher**, J. Schneider, **S. Schnitt**, F. Stratmann, C. Tatzelt, C. Voigt, **A. Walbröl**, A. Weber, B. Wetzel, M. Wirth, and M. Wendisch, 2025: A comprehensive in situ and remote sensing data set collected during the HALO–(𝒜 𝒞)3 aircraft campaign, //Earth Syst. Sci. Data//, 17, 1295–1328, [[https://doi.org/10.5194/essd-17-1295-2025]]. Ehrlich, A., **S. Crewell**, A. Herber, M. Klingebiel, C. Lüpkes, **M. Mech**, S. Becker, S. Borrmann, H. Bozem, M. Buschmann, H.-C. Clemen, E. De La Torre Castro, H. Dorff, R. Dupuy, O. Eppers, F. Ewald, G. George, A. Giez, S. Grawe, C. Gourbeyre, J. Hartmann, E. Jäkel, P. Joppe, O. Jourdan, Z. Jurányi, B. Kirbus, J. Lucke, A.E. Luebke, M. Maahn, N. Maherndl, C. Mallaun, J. Mayer, S. Mertes, G. Mioche, M. Moser, H. Müller, V. Pörtge, **N. Risse**, G. Roberts, S. Rosenburg, J. Röttenbacher, M. Schäfer, J. Schaefer, A. Schäfler, **I. Schirmacher**, J. Schneider, **S. Schnitt**, F. Stratmann, C. Tatzelt, C. Voigt, **A. Walbröl**, A. Weber, B. Wetzel, M. Wirth, and M. Wendisch, 2025: A comprehensive in situ and remote sensing data set collected during the HALO–(𝒜 𝒞)3 aircraft campaign, //Earth Syst. Sci. Data//, 17, 1295–1328, [[https://doi.org/10.5194/essd-17-1295-2025]].
 +
 +**Lauer, M.**, A. Rinke, and **S. Crewell**, 2025: What are the most important contributors to Arctic precipitation - when, where, and how?, //Atmospheric Science Letter//, 26(9), e1317, [[https://doi.org/10.1002/asl.1317]]
  
 Ji, D., M. Palm, M. Buschmann, **K. Ebell**, M. Maturilli, X. Sun, J. Notholt, 2025: Hygroscopic aerosols amplify longwave downward radiation in the Arctic, Atmos. Chem. Phys., 25, 3889–3904, [[https://doi.org/10.5194/acp-25-3889-2025]].  Ji, D., M. Palm, M. Buschmann, **K. Ebell**, M. Maturilli, X. Sun, J. Notholt, 2025: Hygroscopic aerosols amplify longwave downward radiation in the Arctic, Atmos. Chem. Phys., 25, 3889–3904, [[https://doi.org/10.5194/acp-25-3889-2025]]. 
 +
 +Petzold, A., N. F. Khan, Y. Li, P. Spichtinger, S. Rohs, **S. Crewell**, A. Wahner, M. Krämer, 2025: Contrails inside cirrus clouds predominate with uncertain climate impact, in review in //Nature Communications//, 16, 9695, https://www.nature.com/articles/s41467-025-65532-2
  
 Pfitzenmaier, L., P. Kollias, **N. Risse**, **I. Schirmacher**, B. Puigdomenech Treserras, and K. Lamer, 2025: Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data, //Geoscientific Model Development//, Geosci. Model Dev., 18, 101–115, [[https://doi.org/10.5194/gmd-18-101-2025]]. Pfitzenmaier, L., P. Kollias, **N. Risse**, **I. Schirmacher**, B. Puigdomenech Treserras, and K. Lamer, 2025: Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data, //Geoscientific Model Development//, Geosci. Model Dev., 18, 101–115, [[https://doi.org/10.5194/gmd-18-101-2025]].
Line 45: Line 48:
  
 Seidel, C., D. Althausen, A. Ansmann, M. Wendisch, H. Griesche, M. Radenz, J. Hofer, S. Dahlke, M. Maturilli, **A. Walbröl**, H. Baars, and R. Engelmann, 2025: Close Correlation Between Vertically Integrated Tropospheric Water Vapor and the Downward, Broadband Thermal‐Infrared Irradiance at the Ground: Observations in the Central Arctic During MOSAiC, //JGR Atmospheres//, 130, e2024JD042378, [[https://doi.org/10.1029/2024JD042378]]. Seidel, C., D. Althausen, A. Ansmann, M. Wendisch, H. Griesche, M. Radenz, J. Hofer, S. Dahlke, M. Maturilli, **A. Walbröl**, H. Baars, and R. Engelmann, 2025: Close Correlation Between Vertically Integrated Tropospheric Water Vapor and the Downward, Broadband Thermal‐Infrared Irradiance at the Ground: Observations in the Central Arctic During MOSAiC, //JGR Atmospheres//, 130, e2024JD042378, [[https://doi.org/10.1029/2024JD042378]].
 +
 +Wendisch, M., B. Kirbus, D. Ori, M.D. Shupe, **S. Crewell**, H. Sodemann, and V. Schemann. 2025: Observed and modeled Arctic airmass transformations during warm air intrusions and cold air outbreaks, //Atmos. Chem. Phys.//, 25, 15047–15076, [[https://doi.org/10.5194/acp-25-15047-2025]]
  
 ==== 2024 ==== ==== 2024 ====
Line 58: Line 63:
 Kirbus, B., **I. Schirmacher**, M. Klingebiel, M. Schäfer, A. Ehrlich, N. Slättberg, J. Lucke, M. Moser, H. Müller, and M. Wendisch, 2024: Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)3: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses. //Atmos. Chem. Phys.//,24, 3883–3904, [[https://doi.org/10.5194/acp-24-3883-2024]]. Kirbus, B., **I. Schirmacher**, M. Klingebiel, M. Schäfer, A. Ehrlich, N. Slättberg, J. Lucke, M. Moser, H. Müller, and M. Wendisch, 2024: Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)3: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses. //Atmos. Chem. Phys.//,24, 3883–3904, [[https://doi.org/10.5194/acp-24-3883-2024]].
  
-Kiszler, T., **D.Ori**, and **V. Schemann**, 2024: Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds //Atmos. Chem. Phys.// 24, 10039-10053 [[https://doi.org/10.5194/acp-24-10039-2024]].+Kiszler, T., **D.Ori**, and **V. Schemann**, 2024: Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds//Atmos. Chem. Phys.// 24, 10039-10053 [[https://doi.org/10.5194/acp-24-10039-2024]].
  
 Maherndl, N., M. Moser, J. Lucke, **M. Mech**, **N. Risse**, **I. Schirmacher**, and M. Maahn, 2024: Quantifying riming from airborne data during the HALO-(AC)3 campaign, //Atmos. Meas. Tech.//, 17, 1475–1495, [[https://doi.org/10.5194/amt-17-1475-2024]]. Maherndl, N., M. Moser, J. Lucke, **M. Mech**, **N. Risse**, **I. Schirmacher**, and M. Maahn, 2024: Quantifying riming from airborne data during the HALO-(AC)3 campaign, //Atmos. Meas. Tech.//, 17, 1475–1495, [[https://doi.org/10.5194/amt-17-1475-2024]].
publications/reviewed_a.1754665238.txt.gz · Last modified: by susanne