User Tools

Site Tools


publications:reviewed_a

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
publications:reviewed_a [2025/07/13 16:34] – [submitted] nrissepublications:reviewed_a [2025/11/21 08:19] (current) susanne
Line 9: Line 9:
 ==== submitted ====  ==== submitted ==== 
  
-**RisseN.**, **M. Mech**CPrigentJMüller, **SCrewell**: Cloud water path detectability and retrieval accuracy from airborne passive microwave observations over Arctic sea ice, //Atmospheric Measurement Techniques//, submitted 09 July 2025.+MayS. M., DHoffmeisterDBrill, D. Wolf, S. Opitz, **CBöhm**, M. Zickel, O. BubenzerTerracettes in the hyperarid Atacama Desert – fog as a key driver of stepped hillslope evolution?, //Catena//, submitted 02 October 2025
  
-**Chatterjee, D., NRaabe, S. Crewell**: Listening to the Murmurs of Embeddings: Uncovering Low-Level Cloud Processes’ Impact on Solar Energy Applications, //Energy and AI//, submitted 10 June 2025.+Moser, M., C. Voigt, O. Eppers, J. Lucke, E. De La Torre Castro, J. Mayer, R. Dupuy, G. Mioche, O. Jourdan, H.-C. Clemen, J. Schneider, P. Joppe, S. Mertes, B. Wetzel, S. Borrmann, M. Klingebiel, **MMech**CLüpkes**S. Crewell**, A. Ehrlich, A. Herber, and M. WendischThe Arctic Low-Level Mixed-Phase Haze Regime and its Microphysical Differences to Mixed-Phase Clouds, //Atmos. Chem. Phys.// [[https://egusphere.copernicus.org/preprints/2025/egusphere-2025-3876/]]
  
-**Lauer, M.**, ARinke, **S. Crewell**: What are the most important contributors to Arctic precipitation - when, where, and how?, //Atmospheric Science Letter//, submitted 24 February 2025+**RisseN.**, **M. Mech**, CPrigent, J. Müller, **S. Crewell**: Cloud water path detectability and retrieval accuracy from airborne passive microwave observations over Arctic sea ice, //Atmospheric Measurement Techniques Discussions//, [[https://egusphere.copernicus.org/preprints/2025/egusphere-2025-3311/]], submitted 09 July 2025.
  
-Wendisch, M., B. Kirbus, D. OriM.D. Shupe**S. Crewell**, H. Sodemann, and V. SchemannObserved and modeled Arctic airmass transformations during warm air intrusions and cold air outbreaks //EGUsphere [preprint]//, https://egusphere.copernicus.org/preprints/2025/egusphere-2025-2062/+**Chatterjee, D., NRaabe, S. Crewell**: Listening to the Murmurs of Embeddings: Uncovering Low-Level Cloud Processes’ Impact on Solar Energy Applications, //Machine Learning: Earth//, submitted 20 November 2025.
  
-Zeppenfeld, S., J. Schäfer, C. Pilz, **KEbell**, MZeisingFStratmannHSiebertBWehnerMWietz, A. Bracher, M. van PinxterenMarine Carbohydrates and Other Sea Spray Aerosol Constituents Across Altitudes in the Lower Troposphere of Ny-Ålesund, Svalbard, //npj Climate and Atmospheric Science//, submitted on 22 Apr 2025+**Schulte, L.**, RForbesLMagnussonVSchemannJDay**SCrewell**Towards improving Arctic mixed-phase cloud representation in the ECMWF model using 
 +MOSAiC observations, //Quarterly Journal of the Royal Meteorological Society//, submitted 1 August 2025.
  
-==== accepted ====+**Walbröl, A., S. Crewell**, C. Barrientos-Velasco, G. Chellini, H.J. Griesche, J.E. Rückert, **K. Ebell**, Moisture inversions in the central Arctic: Product  
 +assessment and longwave radiative effect, //Quarterly Journal of the Royal Meteorological Society//, submitted 5 September 2025.
  
-**EbellK., C. BuhrenR. Gierens**, GChellini, **M. LauerAWalbröl**SDahlke**PKrobotand M. Mech**2025Impact of weather systems on observed precipitation at Ny-Ålesund (Svalbard), //Atmos. Chem. Phys.// accepted on 22 Apr 2025+ 
 + 
 +ZeppenfeldS., JSchäfer, C. Pilz, **KEbell**M. ZeisingFStratmannHSiebertBWehner, M. WietzA. Bracher, M. van PinxterenMarine Carbohydrates and Other Sea Spray Aerosol Constituents Across Altitudes in the Lower Troposphere of Ny-ÅlesundSvalbard, //npj Climate and Atmospheric Science//, submitted on 22 Apr 2025 
 + 
 +==== accepted ==== 
  
 ==== 2025 ==== ==== 2025 ====
  
-Ji, D., M. Palm, M. Buschmann, **K. Ebell**, M. Maturilli, X. Sun, J. Notholt: Hygroscopic aerosols amplify longwave downward radiation in the Arctic, Atmos. Chem. Phys., 25, 3889–3904, https://doi.org/10.5194/acp-25-3889-2025, 2025. +Dorff, H., F. Ewald, H. Konow, **M. Mech**, D. Ori, V. Schemann, **A. Walbröl**, M. Wendisch, and F.Ament, 2025: Moisture budget estimates derived from airborne observations in an Arctic atmospheric river during its dissipation, Atmos. Chem. Phys., 25, 8329–8354, [[https://doi.org/10.5194/acp-25-8329-2025]]. 
 + 
 +**Ebell, K., C. Buhren, R. Gierens**, G. Chellini, **M. Lauer, A. Walbröl**, S. Dahlke, **P. Krobot, and M. Mech**, 2025: Impact of weather systems on observed precipitation at Ny-Ålesund (Svalbard), //Atmos. Chem. Phys.//, 25, 7315–7342, [[https://doi.org/10.5194/acp-25-7315-2025]]. 
 + 
 +Ehrlich, A., **S. Crewell**, A. Herber, M. Klingebiel, C. Lüpkes, **M. Mech**, S. Becker, S. Borrmann, H. Bozem, M. Buschmann, H.-C. Clemen, E. De La Torre Castro, H. Dorff, R. Dupuy, O. Eppers, F. Ewald, G. George, A. Giez, S. Grawe, C. Gourbeyre, J. Hartmann, E. Jäkel, P. Joppe, O. Jourdan, Z. Jurányi, B. Kirbus, J. Lucke, A.E. Luebke, M. Maahn, N. Maherndl, C. Mallaun, J. Mayer, S. Mertes, G. Mioche, M. Moser, H. Müller, V. Pörtge, **N. Risse**, G. Roberts, S. Rosenburg, J. Röttenbacher, M. Schäfer, J. Schaefer, A. Schäfler, **I. Schirmacher**, J. Schneider, **S. Schnitt**, F. Stratmann, C. Tatzelt, C. Voigt, **A. Walbröl**, A. Weber, B. Wetzel, M. Wirth, and M. Wendisch, 2025: A comprehensive in situ and remote sensing data set collected during the HALO–(𝒜 𝒞)3 aircraft campaign, //Earth Syst. Sci. Data//, 17, 1295–1328, [[https://doi.org/10.5194/essd-17-1295-2025]]. 
 + 
 +**Lauer, M.**, A. Rinke, and **S. Crewell**, 2025: What are the most important contributors to Arctic precipitation - when, where, and how?, //Atmospheric Science Letter//, 26(9), e1317, [[https://doi.org/10.1002/asl.1317]] 
 + 
 +Ji, D., M. Palm, M. Buschmann, **K. Ebell**, M. Maturilli, X. Sun, J. Notholt, 2025: Hygroscopic aerosols amplify longwave downward radiation in the Arctic, Atmos. Chem. Phys., 25, 3889–3904, [[https://doi.org/10.5194/acp-25-3889-2025]].  
 + 
 +Petzold, A., N. F. Khan, Y. Li, P. Spichtinger, S. Rohs, **S. Crewell**, A. Wahner, M. Krämer, 2025: Contrails inside cirrus clouds predominate with uncertain climate impact, in review in //Nature Communications//, 16, 9695, https://www.nature.com/articles/s41467-025-65532-2
  
-EhrlichA., **S. Crewell**, A. Herber, M. Klingebiel, C. Lüpkes, **M. Mech**, S. Becker, S. Borrmann, H. Bozem, M. Buschmann, H.-C. Clemen, E. De La Torre Castro, H. Dorff, R. Dupuy, O. Eppers, F. Ewald, G. George, A. Giez, S. Grawe, C. Gourbeyre, J. Hartmann, E. Jäkel, P. Joppe, O. Jourdan, Z. Jurányi, B. Kirbus, J. Lucke, A.E. Luebke, M. Maahn, N. Maherndl, C. Mallaun, J. Mayer, S. Mertes, G. Mioche, M. Moser, H. Müller, V. Pörtge, **N. Risse**, G. Roberts, S. Rosenburg, J. Röttenbacher, M. Schäfer, J. Schaefer, A. Schäfler, **I. Schirmacher**, J. Schneider, **S. Schnitt**, F. Stratmann, C. Tatzelt, C. Voigt, **A. Walbröl**, A. Weber, B. Wetzel, M. Wirth, and MWendisch, 2025: A comprehensive in situ and remote sensing data set collected during the HALO–(𝒜 𝒞)3 aircraft campaign, //Earth Syst. Sci. Data//, 1712951328, [[https://doi.org/10.5194/essd-17-1295-2025]]+PfitzenmaierL., P. Kollias, **N. Risse**, **I. Schirmacher**, B. Puigdomenech Treserras, and KLamer, 2025: Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data, //Geoscientific Model Development//, Geosci. Model Dev.18, 101115, [[https://doi.org/10.5194/gmd-18-101-2025]].
  
-PfitzenmaierL., PKollias, **N. Risse**, **ISchirmacher**, BPuigdomenech Treserrasand K. Lamer, 2025: Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data, //Geoscientific Model Development//, Geosci. Model Dev., 18, 101–115, [[https://doi.org/10.5194/gmd-18-101-2025]]+RückertJ.E., **AWalbröl**, **N. Risse**, **PKrobot**, RHaseneder-Lind**M. Mech**, **K. Ebell**, and G. Spreen, 2025: Microwave sea ice and ocean brightness temperature and emissivity between 22 and 243 GHz from ship-based radiometers, //Annals of Glaciology//, 2025;66:e8. [[https://doi.org/10.1017/aog.2025.1]].
  
-RückertJ.E., **A. Walbröl****NRisse****PKrobot**RHaseneder-Lind**M. Mech**, **KEbell**, and GSpreen, 2025: Microwave sea ice and ocean brightness temperature and emissivity between 22 and 243 GHz from ship-based radiometers, //Annals of Glaciology//, 2025;66:e8. [[https://doi.org/10.1017/aog.2025.1]]+SeidelC., DAlthausen, A. AnsmannMWendischHGriescheMRadenz, J. Hofer, S. Dahlke, M. Maturilli, **AWalbröl**, H. Baars, and REngelmann, 2025: Close Correlation Between Vertically Integrated Tropospheric Water Vapor and the Downward, Broadband Thermal‐Infrared Irradiance at the Ground: Observations in the Central Arctic During MOSAiC, //JGR Atmospheres//, 130, e2024JD042378, [[https://doi.org/10.1029/2024JD042378]].
  
-Seidel, C., D. Althausen, A. Ansmann, M. Wendisch, H. Griesche, M. RadenzJHoferSDahlke, M. Maturilli, **AWalbröl**, H. Baars, and REngelmann, 2025: Close Correlation Between Vertically Integrated Tropospheric Water Vapor and the Downward, Broadband Thermal‐Infrared Irradiance at the Ground: Observations in the Central Arctic During MOSAiC, //JGR Atmospheres//, 130e2024JD042378, [[https://doi.org/10.1029/2024JD042378]]+Wendisch, M., BKirbusDOri, M.D. Shupe, **SCrewell**, H. Sodemann, and V. Schemann. 2025: Observed and modeled Arctic airmass transformations during warm air intrusions and cold air outbreaks, //Atmos. Chem. Phys.//, 2515047–15076, [[https://doi.org/10.5194/acp-25-15047-2025]]
  
 ==== 2024 ==== ==== 2024 ====
Line 47: Line 63:
 Kirbus, B., **I. Schirmacher**, M. Klingebiel, M. Schäfer, A. Ehrlich, N. Slättberg, J. Lucke, M. Moser, H. Müller, and M. Wendisch, 2024: Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)3: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses. //Atmos. Chem. Phys.//,24, 3883–3904, [[https://doi.org/10.5194/acp-24-3883-2024]]. Kirbus, B., **I. Schirmacher**, M. Klingebiel, M. Schäfer, A. Ehrlich, N. Slättberg, J. Lucke, M. Moser, H. Müller, and M. Wendisch, 2024: Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)3: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses. //Atmos. Chem. Phys.//,24, 3883–3904, [[https://doi.org/10.5194/acp-24-3883-2024]].
  
-Kiszler, T., **D.Ori**, and **V. Schemann**, 2024: Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds //Atmos. Chem. Phys.// 24, 10039-10053 [[https://doi.org/10.5194/acp-24-10039-2024]].+Kiszler, T., **D.Ori**, and **V. Schemann**, 2024: Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds//Atmos. Chem. Phys.// 24, 10039-10053 [[https://doi.org/10.5194/acp-24-10039-2024]].
  
 Maherndl, N., M. Moser, J. Lucke, **M. Mech**, **N. Risse**, **I. Schirmacher**, and M. Maahn, 2024: Quantifying riming from airborne data during the HALO-(AC)3 campaign, //Atmos. Meas. Tech.//, 17, 1475–1495, [[https://doi.org/10.5194/amt-17-1475-2024]]. Maherndl, N., M. Moser, J. Lucke, **M. Mech**, **N. Risse**, **I. Schirmacher**, and M. Maahn, 2024: Quantifying riming from airborne data during the HALO-(AC)3 campaign, //Atmos. Meas. Tech.//, 17, 1475–1495, [[https://doi.org/10.5194/amt-17-1475-2024]].
Line 78: Line 94:
 Chellini, G., **R. Gierens**, **K. Ebell**, T. Kiszler, **P. Krobot**, A. Myagkov, **V. Schemann**, and S. Kneifel: Low-level mixed-phase clouds at the high Arctic site of Ny-Ålesund: A comprehensive long-term dataset of remote sensing observations,  //Earth Syst. Sci. Data//, 15, 5427–5448, [[https://doi.org/10.5194/essd-15-5427-2023]] Chellini, G., **R. Gierens**, **K. Ebell**, T. Kiszler, **P. Krobot**, A. Myagkov, **V. Schemann**, and S. Kneifel: Low-level mixed-phase clouds at the high Arctic site of Ny-Ålesund: A comprehensive long-term dataset of remote sensing observations,  //Earth Syst. Sci. Data//, 15, 5427–5448, [[https://doi.org/10.5194/essd-15-5427-2023]]
  
-Chylik, J., D. Chechin, R. Dupuy, **B. S. Kulla**, C. Lüpkes, S. Mertes, **M. Mech**, and R. A. J. Neggers, 2023: Aerosol-cloud-turbulence interactions in well-coupled Arctic boundary layers over open water, //Atmos. Chem. Phys.//, 23, 4903–4929, [[https://doi.org/10.5194/acp-23-4903-2023]].+Chylik, J., D. Chechin, R. Dupuy, **B. S. Kulla**, C. Lüpkes, S. Mertes, **M. Mech**, and R. A. J. Neggers, 2023: Aerosol impacts on the entrainment efficiency of Arctic mixed-phase convection in a simulated air mass over open water, //Atmos. Chem. Phys.//, 23, 4903–4929, [[https://doi.org/10.5194/acp-23-4903-2023]].
  
 Heinemann, G., L. Schefczyk, R. Zentek, I. M. Brooks, S. Dahlke, and **A. Walbröl**, 2023: Evaluation of Vertical Profiles and Atmospheric Boundary Layer Structure Using the Regional Climate Model CCLM during MOSAiC, //Meteorology//, 2, 257-275, [[https://doi.org/10.3390/meteorology2020016]]. Heinemann, G., L. Schefczyk, R. Zentek, I. M. Brooks, S. Dahlke, and **A. Walbröl**, 2023: Evaluation of Vertical Profiles and Atmospheric Boundary Layer Structure Using the Regional Climate Model CCLM during MOSAiC, //Meteorology//, 2, 257-275, [[https://doi.org/10.3390/meteorology2020016]].
publications/reviewed_a.1752424441.txt.gz · Last modified: by nrisse